Free Access
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 661 - 680
Published online 11 January 2012
  1. R. Artebrant and M. Torrilhon, Increasing the accuracy of local divergence preserving schemes for MHD. J. Comput. Phys. 227 (2008) 3405–3427. [CrossRef]
  2. J. Bálbas and E. Tadmor, Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics II : High-order semi-discrete schemes. SIAM. J. Sci. Comput. 28 (2006) 533–560. [CrossRef]
  3. J. Bálbas, E. Tadmor and C.C. Wu, Non-oscillatory central schemes for one and two-dimensional magnetohydrodynamics I. J. Comput. Phys. 201 (2004) 261–285. [CrossRef]
  4. D.S. Balsara, Divergence free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174 (2001) 614–648. [NASA ADS] [CrossRef]
  5. D.S. Balsara and D. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149 (1999) 270–292. [NASA ADS] [CrossRef] [MathSciNet]
  6. J.B. Bell, P. Colella and H.M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85 (1989) 257–283. [CrossRef]
  7. F. Bouchut, C. Klingenberg and K. Waagan, A multi-wave HLL approximate Riemann solver for ideal MHD based on relaxation I- theoretical framework. Numer. Math. 108 (2007) 7–42. [CrossRef] [MathSciNet]
  8. J.U. Brackbill and D.C. Barnes, The effect of nonzero DivB on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426–430. [NASA ADS] [CrossRef] [MathSciNet]
  9. M. Brio and C.C. Wu, An upwind differencing scheme for the equations of ideal MHD. J. Comput. Phys. 75 (1988) 400–422. [NASA ADS] [CrossRef]
  10. A.J. Chorin, Numerical solutions of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet]
  11. W. Dai and P.R. Woodward, A simple finite difference scheme for multi-dimensional magnetohydrodynamic equations. J. Comput. Phys. 142 (1998) 331–369. [CrossRef]
  12. H. Deconnik, P.L. Roe and R. Struijs, A multi-dimensional generalization of Roe’s flux difference splitter for Euler equations. Comput. Fluids 22 (1993) 215. [CrossRef] [MathSciNet]
  13. A. Dedner, F. Kemm, D. Kröner, C.D. Munz, T. Schnitzer and M. Wesenberg, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002) 645–673. [NASA ADS] [CrossRef] [MathSciNet]
  14. C. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flow : a constrained transport method. Astrophys. J. 332 (1998) 659. [NASA ADS] [CrossRef]
  15. M. Fey, Multi-dimensional upwingding. (I) The method of transport for solving the Euler equations. J. Comput. Phys. 143 (1998) 159–180. [CrossRef] [MathSciNet]
  16. M. Fey, Multi-dimensional upwingding.(II) Decomposition of Euler equations into advection equations. J. Comput. Phys. 143 (1998) 181–199. [CrossRef] [MathSciNet]
  17. F. Fuchs, S. Mishra and N.H. Risebro, Splitting based finite volume schemes for ideal MHD equations. J. Comput. Phys. 228 (2009) 641–660. [CrossRef]
  18. F. Fuchs, A. McMurry, S. Mishra, N.H. Risebro and K. Waagan, Finite volume methods for wave propagation in stratified magneto-atmospheres. Commun. Comput. Phys. 7 (2010) 473–509.
  19. F. Fuchs, A.D. McMurry, S. Mishra, N.H. Risebro and K. Waagan, Approximate Riemann solver and robust high-order finite volume schemes for the MHD equations in multi-dimensions. Commun. Comput. Phys. 9 (2011) 324–362.
  20. S. Gottlieb, C.W. Shu and E. Tadmor, High order time discretizations with strong stability property. SIAM. Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet]
  21. K.F. Gurski, An HLLC-type approximate Riemann solver for ideal Magneto-hydro dynamics. SIAM. J. Sci. Comput. 25 (2004) 2165–2187. [CrossRef]
  22. A. Harten, B. Engquist, S. Osher and S.R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys. 71 (1987) 231–303. [CrossRef] [MathSciNet]
  23. A. Kurganov and E. Tadmor, New high resolution central schemes for non-linear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [NASA ADS] [CrossRef] [MathSciNet]
  24. R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys. 131 (1997) 327–353. [NASA ADS] [CrossRef]
  25. R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge (2002).
  26. T.J. Linde, A three adaptive multi fluid MHD model for the heliosphere. Ph.D. thesis, University of Michigan, Ann-Arbor (1998).
  27. M. Lukacova-Medvidova, K.W. Morton and G. Warnecke, Evolution Galerkin methods for Hyperbolic systems in two space dimensions. Math. Comput. 69 (2000) 1355–1384. [CrossRef] [MathSciNet]
  28. M. Lukacova-Medvidova, J. Saibertova and G. Warnecke, Finite volume evolution Galerkin methods for Non-linear hyperbolic systems. J. Comput. Phys. 183 (2003) 533–562. [CrossRef]
  29. S. Mishra and E. Tadmor, Constraint preserving schemes using potential-based fluxes. I. Multi-dimensional transport equations. Commun. Comput. Phys. 9 (2010) 688–710.
  30. S. Mishra and E. Tadmor, Constraint preserving schemes using potential-based fluxes. II. Genuinely multi-dimensional systems of conservation laws. SIAM J. Numer. Anal. 49 (2011) 1023–1045. [CrossRef] [MathSciNet]
  31. A. Mignone et al., Pluto : A numerical code for computational astrophysics. Astrophys. J. Suppl. 170 (2007) 228–242. [NASA ADS] [CrossRef]
  32. T. Miyoshi and K. Kusano, A multi-state HLL approximate Riemann solver for ideal magneto hydro dynamics. J. Comput. Phys. 208 (2005) 315–344. [NASA ADS] [CrossRef]
  33. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [CrossRef] [MathSciNet]
  34. S. Noelle, The MOT-ICE : A new high-resolution wave propagation algorithm for multi-dimensional systems of conservation laws based on Fey’s method of transport. J. Comput. Phys. 164 (2000) 283–334. [CrossRef] [MathSciNet]
  35. K.G. Powell, An approximate Riemann solver for magneto-hydro dynamics (that works in more than one space dimension). Technical report, ICASE, Langley, VA (1994) 94–24.
  36. K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi and D.L. De zeeuw, A solution adaptive upwind scheme for ideal MHD. J. Comput. Phys. 154 (1999) 284–309. [NASA ADS] [CrossRef]
  37. P.L. Roe and D.S. Balsara, Notes on the eigensystem of magnetohydrodynamics. SIAM. J. Appl. Math. 56 (1996) 57–67. [CrossRef]
  38. J. Rossmanith, A wave propagation method with constrained transport for shallow water and ideal magnetohydrodynamics. Ph.D. thesis, University of Washington, Seattle (2002).
  39. D.S. Ryu, F. Miniati, T.W. Jones and A. Frank, A divergence free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509 (1998) 244–255. [NASA ADS] [CrossRef]
  40. C.W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes – II. J. Comput. Phys. 83 (1989) 32–78. [CrossRef] [MathSciNet]
  41. E. Tadmor, Approximate solutions of nonlinear conservation laws, in Advanced Numerical approximations of Nonlinear Hyperbolic equations, edited by A. Quarteroni. Lecture notes in Mathematics, Springer Verlag (1998) 1–149.
  42. M. Torrilhon, Locally divergence preserving upwind finite volume schemes for magnetohyrodynamic equations. SIAM. J. Sci. Comput. 26 (2005) 1166–1191. [CrossRef]
  43. M. Torrilhon and M. Fey, Constraint-preserving upwind methods for multidimensional advection equations. SIAM. J. Numer. Anal. 42 (2004) 1694–1728. [CrossRef] [MathSciNet]
  44. G. Toth, The DivB = 0 constraint in shock capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605–652. [NASA ADS] [CrossRef] [MathSciNet]
  45. B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you