Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 709 - 729
DOI https://doi.org/10.1051/m2an/2011052
Published online 03 February 2012
  1. A. Alonso and A. Valli, Eddy Current Approximation of Maxwell Equations : Theory, Algorithms and Applications. Springer (2010).
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet]
  3. O. Bodart, A.V. Boureau and R. Touzani, Numerical investigation of optimal control of induction heating processes. Appl. Math. Modelling 25 (2001) 697–712. [CrossRef]
  4. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York (2000).
  5. A. Bossavit and J.-F. Rodrigues, On the electromagnetic induction heating problem in bounded domains. Adv. Math. Sci. Appl. 4 (1994) 79–92.
  6. E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [CrossRef] [MathSciNet]
  7. S. Clain and R. Touzani, A two-dimensional stationary induction heating problem. Math. Methods Appl. Sci. 20 (1997) 759–766. [CrossRef]
  8. S. Clain, J. Rappaz, M. Swierkosz and R. Touzani, Numerical modelling of induction heating for two-dimensional geometries. Math. Models Methods Appl. Sci. 3 (1993) 805–7822. [CrossRef] [MathSciNet] [PubMed]
  9. P.-E. Druet, O. Klein, J. Sprekels, F. Tröltzsch and I. Yousept, Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49 (2011) 1707–1736. [CrossRef] [MathSciNet]
  10. J.A. Griepentrog, Maximal regularity for nonsmooth parabolic problems in Sobolev-Morrey spaces. Adv. Differ. Equ. 12 (2007) 1031–1078.
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
  12. D. Hömberg, Induction hardening of steel – modeling, analysis and optimal design of inductors. Habilitation thesis, TU Berlin (2001).
  13. D. Hömberg, A mathematical model for induction hardening including mechanical effects. Nonlin. Anal. Real World Appl. 5 (2004) 55–90. [CrossRef]
  14. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1–3 (1968).
  15. A.C. Metaxas, Foundations of Electroheat : A Unified Approach. Wiley (1996).
  16. P. Monk, Finite element methods for Maxwell’s equations. Clarendon press, Oxford (2003).
  17. J.C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  18. J. Nocedal and S.J. Wright, Numerical Optimization. Springer-Verlag, New York (1999).
  19. C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem. I : Modelling and analysis. Math. Models Methods Appl. Sci. 8 (1998) 1003–1021. [CrossRef] [MathSciNet] [PubMed]
  20. C. Parietti and J. Rappaz, A quasi-static two-dimensional induction heating problem II. numerical analysis. Math. Models Methods Appl. Sci. 9 (1999) 1333–1350. [CrossRef] [MathSciNet] [PubMed]
  21. J. Rappaz and M. Swierkosz, Mathematical modelling and numerical simulation of induction heating processes. Appl. Math. Comput. Sci. 6 (1996) 207–221.
  22. F. Tröltzsch, Optimal control of partial differential equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, RI 112 (2010).
  23. D. Wachsmuth and A. Rösch, How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Internat. Ser. Numer. Math. Birkhäuser Verlag, Basel 158 (2009) 297–317.
  24. I. Yousept, Optimal control of a nonlinear coupled electromagnetic induction heating system with pointwise state constraints. Mathematics and its Applications/Annals of AOSR 2 (2010) 45–77.
  25. I. Yousept, Optimal control of Maxwell’s equations with regularized state constraints. Comput. Optim. Appl. (2011) DOI: 10.1007/s10589-011-9422-2.

Recommended for you