Free access
Volume 35, Number 1, January/February 2001
Page(s) 153 - 164
Published online 15 April 2002
  1. Y. Achdou and O. Pironneau, A fast solver for Navier-Stokes equations in the laminar regime using mortar finite elements and boundary element methods. SIAM J. Numer. Anal. 32 (1995) 985-1016. [CrossRef] [MathSciNet]
  2. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  3. F. Ben Belgacem, The mixed mortar finite element method for the incompressible Stokes problem: Convergence analysis. SIAM J. Numer. Anal. 37 (2000) 1085-1100. [CrossRef] [MathSciNet]
  4. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. [CrossRef] [MathSciNet]
  5. F. Ben Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact. Math. Models Methods Appl. Sci. 9 (1999) 287-303. [CrossRef] [MathSciNet]
  6. C. Bernardi, N. Debit and Y. Maday, Coupling finite element and spectral methods: First results. Math. Comp. 54 (1990) 21-39. [CrossRef]
  7. C. Bernardi and V. Girault, A Local regularisation operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. [CrossRef] [MathSciNet]
  8. C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51.
  9. P.E. Bjrstad and O.B. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23 (1986) 1097-1120. [CrossRef] [MathSciNet]
  10. H. Brezis, Monotonicity in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to nonlinear functional analysis, E. Zarantonello Ed., Academic Press, New York (1971) 101-156.
  11. P.-G. Ciarlet, The finite element method for elliptic problems, in Handbook of numerical analysis, Vol. II, Part 1, P.-G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991) 17-352.
  12. N. Debit, La méthode des éléments avec joints dans le cas du couplage de méthodes spectrales et méthodes d'éléments finis: résolution des équations de Navier-Stokes. Ph.D. thesis, University of Paris VI, France (1991).
  13. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
  14. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974) 963-971. [CrossRef] [MathSciNet]
  15. R. Glowinski, Lectures on numerical methods for non-linear variational problems. Springer, Berlin (1980).
  16. P. Hild, Problèmes de contact unilatéral et maillages éléments finis incompatibles. Ph.D. thesis, University of Toulouse III, France (1998).
  17. J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure. Appl. Math. XX (1967) 493-519.
  18. P.P. Mosolov and V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium. PPM, J. Mech. Appl. Math. 29 (1965) 545-577.
  19. P.P. Mosolov and V.P. Miasnikov, On stagnant flow regions of a viscous-plastic medium in pipes. PPM, J. Mech. Appl. Math. 30 (1966) 841-854.
  20. P.P. Mosolov and V.P. Miasnikov, On qualitative singularities of the flow of a viscoplastic medium in pipes. PPM, J. Mech Appl. Math. 31 (1967) 609-613.

Recommended for you