Free Access
Issue
ESAIM: M2AN
Volume 35, Number 2, March/April 2001
Page(s) 313 - 330
DOI https://doi.org/10.1051/m2an:2001117
Published online 15 April 2002
  1. C.R. Anderson, Vorticity boundary conditions and boundary vorticity generation for two-dimensional viscous incompressible flows. J. Comp. Phys. 80 (1989) 72-97. [CrossRef] [Google Scholar]
  2. J.B. Bell, P. Colella and H.M. Glaz, A second-order projection method for the incompressible navier-stokes equations. J. Comp. Phys. 85 (1989) 257-283. [Google Scholar]
  3. M. Ben-Artzi, Vorticity dynamics in planar domains. (In preparation). [Google Scholar]
  4. M. Ben-Artzi, Global solutions of two-dimensional navier-stokes and euler equations. Arch. Rat. Mech. Anal. 128 (1994) 329-358. [CrossRef] [Google Scholar]
  5. P. Bjorstad, Fast numerical solution of the biharmonic dirichlet problem on rectangles. SIAM J. Numer. Anal. 20 (1983) 59-71. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.J. Chorin, Numerical solution of the navier-stokes equations. Math. Comp. 22 (1968) 745-762. [Google Scholar]
  7. A.J. Chorin, Vortex sheet approximation of boundary layers. J. Comp. Phys. 27 (1978) 428-442. [CrossRef] [Google Scholar]
  8. A.J. Chorin and J.E. Marsden, A mathematical introduction to fluid mechanics. 2nd edn., Springer-Verlag, New York (1990). [Google Scholar]
  9. E.J. Dean, R. Glowinski and O. Pironneau, Iterative solution of the stream function-vorticity formulation of the stokes problem, application to the numerical simulation of incompressible viscous flow. Comput. Method Appl. Mech. Engrg. 87 (1991) 117-155. [CrossRef] [Google Scholar]
  10. S.C.R. Dennis and L. Quartapelle, Some uses of green's theorem in solving the navier-stokes equations. Internat. J. Numer. Methods Fluids 9 (1989) 871-890. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. E and J.-G. Liu, Essentially compact schemes for unsteady viscous incompressible flows. J. Comp. Phys. 126 (1996) 122-138. [CrossRef] [Google Scholar]
  12. W. E and J.-G. Liu, Vorticity boundary condition and related issues for finite difference scheme. J. Comp. Phys. 124 (1996) 368-382. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. E and J.-G. Liu, Finite difference methods for 3-d viscous incompressible flows in the vorticity-vector potential formulation on nonstaggered grids. J. Comp. Phys. 138 (1997) 57-82. [CrossRef] [Google Scholar]
  14. D. Fishelov, Simulation of three-dimensional turbulent flow in non-cartesian geometry. J. Comp. Phys. 115 (1994) 249-266. [CrossRef] [Google Scholar]
  15. U. Ghia, K.N. Ghia and C.T. Shin, High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. J. Comp. Phys. 48 (1982) 387-411. [Google Scholar]
  16. R. Glowinski, Personal communication. [Google Scholar]
  17. P.M. Gresho, Incompressible fluid dynamics: some fundamental formulation issues. Ann. Rev. Fluid Mech. 23 (1991) 413-453. [CrossRef] [Google Scholar]
  18. P.M. Gresho and S.T. Chan, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, parts I-II. Internat. J. Numer. Methods Fluids 11 (1990) 587-659. [Google Scholar]
  19. K.E. Gustafson and J.A. Sethian (Eds.), Vortex methods and vortex motion. SIAM, Philadelphia (1991). [Google Scholar]
  20. R.R. Hwang and C-C. Yao, A numerical study of vortex shedding from a square cylinder with ground effect. J. Fluids Eng. 119 (1997) 512-518. [CrossRef] [Google Scholar]
  21. K.M. Kelkar and S.V. Patankar, Numerical prediction of vortex sheddind behind a square cylinder. Internat. J. Numer. Methods Fluids 14 (1992) 327-341. [CrossRef] [Google Scholar]
  22. O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Gordon and Breach, New York (1963). [Google Scholar]
  23. L.D. Landau and E.M. Lifshitz, Fluid mechanics, Chap. II, Sec. 15. Pergamon Press, New York (1959). [Google Scholar]
  24. J. Leray, Etudes de diverses equations integrales non lineaires et des quelques problemes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. [Google Scholar]
  25. D.A. Lyn, S. Einav, S. Rodi and J.H. Park, A laser-doppler velocometry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304 (1995) 285-319. [CrossRef] [Google Scholar]
  26. S.A. Orszag and M. Israeli, in Numerical simulation of viscous incompressible flows, M. van Dyke, W.A. Vincenti, J.V. Wehausen, Eds., Ann. Rev. Fluid Mech. 6 (1974) 281-318. [CrossRef] [Google Scholar]
  27. T.W. Pan and R. Glowinski, A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the navier-stokes equations. Comput. Fluid Dynamics 9 (2000). [Google Scholar]
  28. O. Pironneau, Finite element methods for fluids. John Wiley & Sons, New York (1989). [Google Scholar]
  29. L. Quartapelle, Numerical solution of the incompressible Navier-Stokes equations. Birkhauser Verlag, Basel (1993). [Google Scholar]
  30. L. Quartapelle and F. Valz-Gris, Projection conditions on the vorticity in viscous incompressible flows. Internat. J. Numer. Methods Fluids 1 (1981) 129-144. [CrossRef] [MathSciNet] [Google Scholar]
  31. R. Temam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II. Arch. Ration. Mech. Anal. 33 (1969) 377-385. [Google Scholar]
  32. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1979). [Google Scholar]
  33. T.E. Tezduyar, J. Liou, D.K. Ganjoo and M. Behr, Solution techniques for the vorticity-streamfunction formulation of the two-dimensional unsteady incompressible flows. Internat. J. Numer. Methods Fluids 11 (1990) 515-539. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you