Free access
Volume 35, Number 2, March/April 2001
Page(s) 331 - 354
Published online 15 April 2002
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potential in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823-864. [CrossRef] [MathSciNet]
  2. M.L. Barton and Z.J. Cendes, New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61 (1987) 3919-3921. [CrossRef]
  3. A. Bermudez and D.G. Pedreira, Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides. Numer. Math. 61 (1992) 39-57. [CrossRef] [MathSciNet]
  4. D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math. 86 (2000). DOI 10.1007/s002110000182.
  5. D. Boffi, A note on the discrete compactness property and the de Rham complex. Technical Report AM188, Department of Mathematics, Penn State University, 1999. Appl. Math. Lett. 14 (2001) 33-38. [CrossRef] [MathSciNet]
  6. D. Boffi, P. Fernandes, L. Gastaldi and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1999) 1264-1290. [CrossRef] [MathSciNet]
  7. A. Bossavit, Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proceedings, part A 135 (1988) 493-500.
  8. A. Bossavit, A rationale for `edge-elements' in 3-D fields computations. IEEE Trans. Magnet. 24 (1988) 74-79. [CrossRef]
  9. A. Bossavit, Solving maxwell's equations in a closed cavity, and the question of `spurious modes'. IEEE Trans. Magnet. 26 (1990) 702-705. [CrossRef]
  10. S. Caorsi, P. Fernandes and M. Raffetto, Edge elements and the inclusion condition. IEEE Microwave Guided Wave Lett. 5 (1995) 222-223. [CrossRef]
  11. S. Caorsi, P. Fernandes and M. Raffetto, Towards a good characterization of spectrally correct finite element methods in electromagnetics. COMPEL 15 (1996) 21-35.
  12. S. Caorsi, P. Fernandes and M. Raffetto, Do covariant projection elements really satisfy the inclusion condition? IEEE Trans. Microwave Theory Tech. 45 (1997) 1643-1644.
  13. S. Caorsi, P. Fernandes and M. Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. [CrossRef] [MathSciNet]
  14. S. Caorsi, P. Fernandes and M. Raffetto, Characteristic conditions for spurious-free finite element approximations of electromagnetic eigenproblems, in Proceedings of ECCOMAS 2000, Barcelona, Spain (2000) 1-13.
  15. Z.J. Cendes and P.P. Silvester, Numerical solution of dielectric loaded waveguides: I-finite-element analysis. IEEE Trans. Microwave Theory Tech. 18 (1970) 1124-1131. [CrossRef]
  16. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
  17. C.W. Crowley, P.P. Silvester and H. Hurwitz Jr., Covariant projection elements for 3d vector field problems. IEEE Trans. Magnet. 24 (1988) 397-400. [CrossRef]
  18. J.B. Davies, F.A. Fernandez and G.Y. Philippou, Finite element analysis of all modes in cavities with circular symmetry. IEEE Trans. Microwave Theory Tech. 30 (1982) 1975-1980. [CrossRef]
  19. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. [CrossRef] [MathSciNet]
  20. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986).
  21. M. Hano, Vector finite element solution of anisotropic waveguides using novel triangular elements. Electron. Com. Japan, Part 2, 71 (1988) 71-80.
  22. M. Hara, T. Wada, T. Fukasawa and F. Kikuchi, A three dimensional analysis of rf electromagnetic fields by the finite element method. IEEE Trans. Magnet. 19 (1983) 2417-2420. [CrossRef]
  23. H.C. Hoyt, Numerical studies of the shapes of drift tubes and Linac cavities. IEEE Trans. Nucl. Sci. 12 (1965) 153-155. [CrossRef]
  24. H.C. Hoyt, D.D. Simmonds and W.F. Rich, Computer designed 805 MHz proton Linac cavities. The Review of Scientific Instruments 37 (1966) 755-762. [CrossRef]
  25. F. Kikuchi, On a discrete compactness property for the Nedelec finite elements. J. Fac. Sci., Univ. Tokyo 36 (1989) 479-490.
  26. F. Kikuchi, Theoretical analysis of Nedelec's edge elements, in Proceedings of Computational Engineering Conference, Tokyo, Japan, May 26-28 (1999).
  27. R. Miniowitz and J.P. Webb, Covariant-projection quadrilateral elements for the analysis of waveguides with sharp edges. IEEE Trans. Microwave Theory Tech. 39 (1991) 501-505. [CrossRef]
  28. P. Monk and L. Demkowicz, Discrete compactness and the approximation of Maxwell's equations in Formula . Math. Comput. 70 (2001) 507-523.
  29. J.C. Nedelec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315-341. [CrossRef] [MathSciNet]
  30. J.C. Nedelec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57-81. [CrossRef] [MathSciNet]
  31. R. Parodi, A. Stella and P. Fernandes, Rf tests of a band overlap free daw accelerating structure, in Proceedings of the IEEE 1991 Particle Accelerator Conference, San Francisco, USA (1991) 3026-3028.
  32. J.S. Wang and N. Ida, Curvilinear and higher order `edge' finite elements in electromagnetic field computation. IEEE Trans. Magnet. 29 (1993) 1491-1494. [CrossRef]
  33. S.H. Wong and Z.J. Cendes, Combined finite element-modal solution of three-dimensional eddy current problems. IEEE Trans. Magnet. 24 (1988) 2685-2687. [CrossRef]
  34. J.P. Webb, Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propagation 47 (1999) 1244-1253. [CrossRef]
  35. J.P. Webb and R. Miniowitz, Analysis of 3-D microwave resonators using covariant-projection elements. IEEE Trans. Microwave Theory Tech. 39 (1991) 1895-1899. [CrossRef]

Recommended for you