Free access
Volume 35, Number 4, July-August 2001
Page(s) 607 - 630
Published online 15 April 2002
  1. G. Caginalp, An analysis of a phase-field model of a free boundary. Arch. Rat. Mech. Anal. 92 (1986) 205-245.
  2. G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase field equation. Phys. Rev. A 39 (1989) 5887-5896. [CrossRef] [MathSciNet] [PubMed]
  3. G. Caginalp, Phase field models and sharp interface limits: some differences in subtle situations. Rocky Mountain J. Math. 21 (1996) 603-616. [CrossRef]
  4. G. Caginalp and X. Chen, Phase field equations in the singular limit of sharp interface problems, in On the evolution of phase boundaries, IMA 43 (1990-1991) 1-28.
  5. G. Caginalp and E. Sokolovsky, Phase field computations of single-needle crystals, crystal growth, and motion by mean curvature. SIAM J. Sci. Comput. 15 (1994) 106-126. [CrossRef] [MathSciNet]
  6. M. Fabbri and V.R. Vollmer, The phase-field method in the sharp-interface limit: A comparison between model potentials. J. Comp. Phys. 130 (1997) 256-265. [CrossRef]
  7. G.B. McFadden, A.A. Wheeler, R.J. Brown, S.R. Coriell and R.F. Sekerka, Phase-field models for anisotropic interfaces. Phys. Rev. E 48 (1993) 2016-2024. [CrossRef] [MathSciNet]
  8. O. Penrose and P. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Physica D 43 (1990) 44-62. [CrossRef] [MathSciNet]
  9. O. Penrose and P. Fife, On the relation between the standard phase-field model and a ``thermodynamically consistent'' phase-field model. Physica D 69 (1993) 107-113. [CrossRef] [MathSciNet]
  10. S.L. Wang, R.F. Sekerka, A.A. Wheeler, B.T. Murray, S.R. Coriell, R.J. Braun and G.B. McFadden, Thermodynamically-consistent phase-field models. Physica D 69 (1993) 189-200. [CrossRef] [MathSciNet]
  11. S.L. Wang and R.F. Sekerka, Algorithms for phase field computations of the dendritic operating state at large supercoolings. J. Comp. Phys. 127 (1996) 110-117. [CrossRef]

Recommended for you