Free access
Issue
ESAIM: M2AN
Volume 37, Number 3, May-June 2003
Page(s) 495 - 514
DOI http://dx.doi.org/10.1051/m2an:2003039
Published online 15 April 2004
  1. Y. Achdou and Y. Maday, The mortar element method with overlapping subdomains. SIAM J. Numer. Anal. 40 (2002) 601–628. [CrossRef] [MathSciNet]
  2. R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM: M2AN 37 (2003) 209–225. [CrossRef] [EDP Sciences] [MathSciNet]
  3. M.J. Berger, On conservation at grid interfaces. SIAM J. Numer. Anal. 24 (1987) 967–984. [CrossRef] [MathSciNet]
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin (1994).
  5. F. Brezzi, J.-L. Lions and O. Pironneau, Analysis of a Chimera method. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 655–660.
  6. X.-C. Cai, M. Dryja and M. Sarkis, Overlapping nonmatching grid mortar element methods for elliptic problems. SIAM J. Numer. Anal. 36 (1999) 581–606. [CrossRef] [MathSciNet]
  7. G. Chesshire and W.D. Henshaw, Composite overlapping meshes for the solution of partial-differential equations. J. Comput. Phys. 90 (1990) 1–64. [CrossRef] [MathSciNet]
  8. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer-Verlag, Berlin (1979).
  9. A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5537–5552. [CrossRef] [MathSciNet]
  10. R.D. Lazarov, J.E. Pasciak, J. Schöberl and P.S. Vassilevski, Almost optimal interior penalty discontinuous approximations of symmetric elliptic problems on non-matching grids. Technical Report, ISC-01-05-MATH (2001).
  11. R.D. Lazarov, S.Z. Tomov and P.S. Vassilevski, Interior penalty discontinuous approximations of elliptic problems. Comput. Meth. Appl. Math. 1 (2001) 367–382.
  12. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet]
  13. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 190 (1990) 483–493. [CrossRef] [MathSciNet]
  14. R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998).

Recommended for you