 M.G. Crandall and A. Majda, Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1–21. [CrossRef] [MathSciNet]
 A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet]
 A. Harten and S. Osher, Uniformly high order accurate nonoscillatory schemes I. SIAM J. Numer. Anal. 24 (1987) 229–309.
 A. Harten, J.M. Hyman and P.D. Lax, On finite difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297–322. [CrossRef] [MathSciNet]
 C. Helzel and G. Warnecke, Unconditionally stable explicit schemes for the approximation of conservation laws, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001). Also available at http://www.math.fuberlin.de/∼danse/bookpapers/
 N.N. Kuznetsov, Accuracy of some approximate methods for computing the weaks solutions of a firstorder quasilinear equation. USSR. Comput. Math. Phys. 16 (1976) 105–119. [CrossRef]
 X.D. Liu and E. Tadmor, Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397–425. [CrossRef] [MathSciNet]
 F. Sabac, The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34 (1997) 2306–2318 [CrossRef] [MathSciNet]
 R. Sanders, On the convergence of monotone finite difference schemes with variable spatial differencing. Math. Comput. 40 (1983) 91–106. [CrossRef] [MathSciNet]
 E. Tadmor, The largetime behavior of the scalar, genuinely nonlinear LaxFriedrichs schemes. Math. Comput. 43 (1984) 353–368. [CrossRef]
 T. Tang and Z.H. Teng, The sharpness of Kuznetsov's error estimate for monotone difference schemes. Math. Comput. 64 (1995) 581–589.
 T. Tang and Z.H. Teng, Viscosity methods for piecewise smooth solutions to scalar conservation laws. Math. Comput. 66 (1997) 495–526. [CrossRef]
Free access
Issue 
ESAIM: M2AN
Volume 38, Number 2, MarchApril 2004



Page(s)  345  357  
DOI  http://dx.doi.org/10.1051/m2an:2004016  
Published online  15 March 2004 