Free access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 1019 - 1040
DOI http://dx.doi.org/10.1051/m2an:2005044
Published online 15 September 2005
  1. V.I. Agoshkov, Optimal Control Methods and Adjoint Equations in Mathematical Physics Problems. Institute of Numerical Mathematics, Russian Academy of Science, Moscow (2003).
  2. A.K. Aziz, J.W. Wingate and M.J. Balas, Control Theory of Systems Governed by Partial Differential Equations. Academic Press, New York (1971).
  3. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1–102. [CrossRef] [MathSciNet]
  4. R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concepts. SIAM J. Control Optim. 39 (2000) 113–132. [CrossRef] [MathSciNet]
  5. M. Braack and A. Ern, A posteriori control of modelling errors and Discretization errors. SIAM Multiscale Model. Simul. 1 (2003) 221–238. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  6. G. Finzi, G. Pirovano and M. Volta, Gestione della Qualità dell'aria. Modelli di Simulazione e Previsione. Mc Graw-Hill, Milano (2001).
  7. L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511–533. [CrossRef] [MathSciNet]
  8. A.N. Kolmogorov and S.V. Fomin, Elements of Theory of Functions and Functional Analysis. V.M. Tikhomirov, Nauka, Moscow (1989).
  9. R. Li, W. Liu, H. Ma and T. Tang, Adaptive finite element approximation for distribuited elliptic optimal control problems. SIAM J. Control Optim. 41 (2001) 1321–1349. [CrossRef] [MathSciNet]
  10. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971).
  11. W. Liu and N. Yan, A posteriori error estimates for some model boundary control problems. J. Comput. Appl. Math. 120 (2000) 159–173. [CrossRef] [MathSciNet]
  12. W. Liu and N. Yan, A Posteriori error estimates for distribuited convex optimal control problems. Adv. Comput. Math. 15 (2001) 285–309. [CrossRef] [MathSciNet]
  13. B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids. Clarendon Press, Oxford (2001).
  14. M. Picasso, Anisotropic a posteriori error estimates for an optimal control problem governed by the heat equation. Int. J. Numer. Method PDE (2004), submitted.
  15. O. Pironneau and E. Polak, Consistent approximation and approximate functions and gradients in optimal control. SIAM J. Control Optim. 41 (2002) 487–510. [CrossRef] [MathSciNet]
  16. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin and Heidelberg (1994).
  17. J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization (Shape Sensitivity Analysis). Springer-Verlag, New York (1991).
  18. R.B. Stull, An Introduction to Boundary Layer Meteorology. Kluver Academic Publishers, Dordrecht (1988).
  19. F.P. Vasiliev, Methods for Solving the Extremum Problems. Nauka, Moscow (1981).
  20. D.A. Venditti and D.L. Darmofal, Grid adaption for functional outputs: application to two-dimensional inviscid flows. J. Comput. Phys. 176 (2002) 40–69. [CrossRef] [MathSciNet]
  21. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Teubner (1996).

Recommended for you