Free access
Volume 42, Number 1, January-February 2008
Page(s) 113 - 139
Published online 12 January 2008
  1. S. Antman, Nonlinear problems of elasticity, Applied Mathematical Sciences 107. Springer, New York, second edition (2005).
  2. X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797–826.
  3. X. Blanc, C. Le Bris and P.-L. Lions, Atomistic to continuum limits for computational materials science. ESAIM: M2AN 41 (2007) 391–426.
  4. R.F. Brown, A Topological Introduction to Nonlinear Analysis. Birkhäuser (2004).
  5. W. E and P. Ming, Analysis of multiscale methods. J. Comput. Math. 22 (2004) 210–219. [MathSciNet]
  6. W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific, Singapore (2005) 18–32.
  7. W. E and P. Ming, Cauchy-born rule and the stabilitiy of crystalline solids: Static problems. Arch. Ration. Mech. Anal. 183 (2007) 241–297. [CrossRef] [MathSciNet]
  8. W. E, J. Lu and J. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. [CrossRef]
  9. W. Fleming, Functions of Several Variables. Springer-Verlag (1977).
  10. J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. [CrossRef]
  11. P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657–675 (electronic). [CrossRef] [MathSciNet]
  12. P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313–332. [CrossRef] [MathSciNet]
  13. M. Marder, Condensed Matter Physics. John Wiley & Sons (2000).
  14. R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203–239. [CrossRef]
  15. R. Miller, L. Shilkrot and W. Curtin, A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271–284. [CrossRef]
  16. J.T. Oden, S. Prudhomme, A. Romkes and P. Bauman, Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359–2389. [CrossRef] [MathSciNet]
  17. C. Ortner and E. Süli, A posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Technical report, Oxford Numerical Analysis Group (2006).
  18. C. Ortner and E. Süli, A priori analysis of the quasicontinuum method in one dimension. Technical report, Oxford Numerical Analysis Group (2006).
  19. S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Multiscale Comput. Eng. 4 (2006) 647–662. [CrossRef]
  20. D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704–1707. [CrossRef]
  21. D. Serre, Matrices: Theory and applications, Graduate Texts in Mathematics 216. Springer-Verlag, New York (2002). Translated from the 2001 French original.
  22. V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics — the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611–642. [CrossRef] [MathSciNet]
  23. T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104. [CrossRef]
  24. E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529–1563. [CrossRef]

Recommended for you