Free access
Issue
ESAIM: M2AN
Volume 43, Number 6, November-December 2009
Page(s) 1027 - 1044
DOI http://dx.doi.org/10.1051/m2an/2009016
Published online 12 June 2009
  1. G. Alberti and A. De Simone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79–97. [CrossRef] [MathSciNet]
  2. G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009).
  3. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with line-tension effect. Arch. Rat. Mech. Anal. 144 (1998) 1–46. [CrossRef] [MathSciNet]
  4. S. Baldo and G. Bellettini, Γ-convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica 1 (1991) 33–64.
  5. W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp. 25 (2004) 1674. [CrossRef]
  6. A. Braides, Γ-convergence for beginners. Oxford University Press (2002).
  7. M. Callies and D. Quéré, On water repellency. Soft Matter 1 (2005) 55–61. [CrossRef]
  8. G. Dal Maso, An introduction to Γ-convergence. Birkhaüser (1993).
  9. P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena. Springer (2004).
  10. A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Networks and Heterogeneous Media 2 (2007) 211–225 [CrossRef] [MathSciNet]
  11. R. Finn, Equilibrium Capillary Surfaces. Springer (1986).
  12. A. Lafuma and D. Quéré, Superhydrophobic states. Nature Materials 2 (2003) 457–460. [CrossRef] [PubMed]
  13. L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987) 497.
  14. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. It. B 14 (1977) 285–299.
  15. N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 1249–1253. [CrossRef]
  16. S.J. Polak, An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974) 197–201. [CrossRef] [MathSciNet]
  17. P. Seppecher, Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977–992. [CrossRef]
  18. J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004).

Recommended for you