Free access
Issue
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
Page(s) 291 - 315
DOI http://dx.doi.org/10.1051/m2an/2011011
Published online 12 October 2011
  1. D.N. Arnold, Discretization by finite element of a model parameter dependent problem. Numer. Math. 37 (1981) 405–421. [CrossRef] [MathSciNet]
  2. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276–1290. [CrossRef] [MathSciNet]
  3. K. Arunakirinathar and B.D. Reddy, Mixed finite element methods for elastic rods of arbitrary geometry. Numer. Math. 64 (1993) 13–43. [CrossRef] [MathSciNet]
  4. K.-J. Bathe, F. Brezzi and S.W. Cho, The MITC7 and MITC9 plate bending elements, Comput. Struct. 32 (1984) 797–814.
  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
  6. F. d'Hennezel, Domain decomposition method and elastic multi-structures: the stiffened plate problem. Numer. Math. 66 (1993) 181–197. [CrossRef] [MathSciNet]
  7. R.G. Durán and E. Liberman, On the mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58 (1992) 561–573.
  8. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004).
  9. R. Falk, Finite element methods for linear elasticity, in Mixed Finite Elements, Compatibility Conditions, and Applications. Springer-Verlag, Berlin, Heidelberg (2006) 159–194.
  10. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg (1986).
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).
  12. T.P. Holopainen, Finite element free vibration analysis of eccentrically stiffened plates. Comput. Struct. 56 (1995) 993–1007. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. V. Janowsky, and P. Procházka, The nonconforming finite element method in the problem of clamped plate with ribs. Appl. Math. 21 (1976) 273–289.
  14. A. Mukherjee and M. Mukhopadhyay, Finite element free vibration of eccentrically stiffened plates. Comput. Struct. 30 (1988) 1303–1317. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  15. J. O'Leary and I. Harari, Finite element analysis of stiffened plates. Comput. Struct. 21 (1985) 973–985. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  16. P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1977) 292–315.
  17. L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [CrossRef] [MathSciNet]

Recommended for you