Free Access
Issue
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
Page(s) 239 - 263
DOI https://doi.org/10.1051/m2an/2011042
Published online 12 October 2011
  1. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Num. 15 (2006) 1–155. [CrossRef] [MathSciNet]
  2. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47 (2010) 281–354. [CrossRef] [MathSciNet]
  3. M. Bergot, G. Cohen and M. Duruflé, Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42 (2010) 345–381. [CrossRef] [MathSciNet]
  4. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [CrossRef] [MathSciNet]
  5. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer Verlag (2008).
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial Mathematics (2002).
  7. J.L. Coulomb, F.X. Zgainski and Y. Maréchal, A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements. IEEE Trans. Magn. 33 (1997) 1362–1365. [CrossRef]
  8. L. Demkowicz and A. Buffa, H1, Formula and Formula -conforming projection-based interpolation in three dimensions. Quasi-optimal Formula -interpolation estimates. Comput. Methods Appl. Mech. Eng. 194 (2005) 267–296.
  9. L. Demkowicz, J. Kurtz, D. Pardo, M. Paszenski and W. Rachowicz, Computing with hp-Adaptive Finite Elements Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications 2. Chapman & Hall (2007).
  10. M. Fortin and F. Brezzi, Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics). Springer-Verlag Berlin and Heidelberg GmbH & Co. K (1991).
  11. V. Gradinaru and R. Hiptmair, Whitney elements on pyramids. Electronic Transactions on Numerical Analysis 8 (1999) 154–168. [MathSciNet]
  12. R.D. Graglia and I.L. Gheorma, Higher order interpolatory vector bases on pyramidal elements. IEEE Trans. Antennas Propag. 47 (1999) 775. [CrossRef]
  13. P.C. Hammer, O.J. Marlowe and A.H. Stroud, Numerical integration over simplexes and cones. Mathematical Tables Aids Comput. 10 (1956) 130–137. [CrossRef]
  14. J.M. Melenk, K. Gerdes and C. Schwab, Fully discrete hp-finite elements: Fast quadrature. Comput. Methods Appl. Mech. Eng. 190 (2001) 4339–4364. [CrossRef]
  15. P. Monk, Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003).
  16. J.-C. Nedéléc, Mixed finite elements in Formula . Num. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  17. N. Nigam and J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. (2011); doi: 10.1093/imanum/drr015.
  18. A.H. Stroud, Approximate calculation of multiple integrals. Prentice-Hall Inc., Englewood Cliffs, N.J. (1971).
  19. J. Warren, On the uniqueness of barycentric coordinates, in Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling, July 29-August 2, 2002, Vilnius University, Lithuania. American Mathematical Society 334 (2002) 93–99.
  20. C. Wieners, Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons. Technical report, University of Stuttgart.
  21. S. Zaglmayr, High Order Finite Element methods for Electromagnetic Field Computation. Ph. D. thesis, Johannes Kepler University, Linz (2006).
  22. F.-X. Zgainski, J.-L. Coulomb, Y. Marechal, F. Claeyssen and X. Brunotte, A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32 (1996) 1393–1396. [CrossRef]

Recommended for you