Free Access
Volume 46, Number 4, July-August 2012
Page(s) 797 - 812
Published online 03 February 2012
  1. I. Babuška and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52 (1989) 275–297. [MathSciNet]
  2. I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet. North-Holland, Amsterdam (1991) 641–787.
  3. C. Bacuta and J.H. Bramble, Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 874–878. [CrossRef] [MathSciNet]
  4. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet]
  5. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed fomulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci 25 (1997) 131–154. [MathSciNet]
  6. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121–140. [CrossRef] [MathSciNet]
  7. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994).
  8. F. Brezzi and M. Fortin, MixedandHybrid Finite Element Methods. Springer-Verlag, New York (1991).
  9. F. Chatelin, Spectral Approximation of Linear Operators. Academic Press Inc., New York (1983).
  10. J. Douglas and J.E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39–52. [CrossRef] [MathSciNet]
  11. R. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165–1178. [CrossRef] [MathSciNet] [PubMed]
  12. F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction. Instituto Lombardo (Rend. Sc.) (2004) 138.
  13. F. Gardini, Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM : M2AN 43 (2009) 853–865. [CrossRef] [EDP Sciences]
  14. V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986).
  15. P. Grisvard, Singularities in Boundary Problems. MASSON and Springer-Verlag (1985).
  16. Q. Lin and J. Lin, Finite Element Methods : Accuracy and Inprovement. China Sci. Tech. Press (2005).
  17. Q. Lin and H. Xie, Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math. 59 (2009) 1884–1893. [CrossRef]
  18. Q. Lin and N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods. HeBei University Publishers (1995) (in Chinese)
  19. Q. Lin, H. Huang and Z. Li, New expansion of numerical eigenvalue for − Δu = λρu by nonconforming elements. Math. Comp. 77 (2008) 2061–2084. [CrossRef] [MathSciNet]
  20. B. Mercier, J. Osborn, J. Rappaz and P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427–453. [CrossRef] [MathSciNet]
  21. J. Osborn, Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976) 185–197. [CrossRef] [MathSciNet]

Recommended for you