Issue |
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
|
|
---|---|---|
Page(s) | 1371 - 1401 | |
DOI | https://doi.org/10.1051/m2an/2015076 | |
Published online | 04 August 2016 |
Numerical aspects of large-time optimal control of Burgers equation
1 New York City College of Technology. 300 Jay Street, NY 11201
Brooklyn, USA.
nhajiallahverdipur@citytech.cuny.edu
2 BCAM − Basque Center for Applied Mathematics. Alameda
Mazarredo 14, 48009 Bilbao, Basque Country, Spain.
alejandropozo@gmail.com
3 Departamento de Matemáticas, Universidad Autónoma de Madrid,
Cantoblanco, 28049 Madrid, Spain.
enrique.zuazua@uam.es
Received:
27
January
2015
Revised:
3
October
2015
Accepted:
13
October
2015
In this paper, we discuss the efficiency of various numerical methods for the inverse design of the Burgers equation, both in the viscous and in the inviscid case, in long time-horizons. Roughly, the problem consists in, given a final desired target, to identify the initial datum that leads to it along the Burgers dynamics. This constitutes an ill-posed backward problem. We highlight the importance of employing a proper discretization scheme in the numerical approximation of the equation under consideration to obtain an accurate approximation of the optimal control problem. Convergence in the classical sense of numerical analysis does not suffice since numerical schemes can alter the dynamics of the underlying continuous system in long time intervals. As we shall see, this may end up affecting the efficiency on the numerical approximation of the inverse design, that could be polluted by spurious high frequency numerical oscillations. To illustrate this, two well-known numerical schemes are employed: the modified Lax−Friedrichs scheme (MLF) and the Engquist−Osher (EO) one. It is by now well-known that the MLF scheme, as time tends to infinity, leads to asymptotic profiles with an excess of viscosity, while EO captures the correct asymptotic dynamics. We solve the inverse design problem by means of a gradient descent method and show that EO performs robustly, reaching efficiently a good approximation of the minimizer, while MLF shows a very strong sensitivity to the selection of cell and time-step sizes, due to excess of numerical viscosity. The achieved numerical results are confirmed by numerical experiments run with the open source nonlinear optimization package (IPOPT).
Mathematics Subject Classification: 49M / 35Q35 / 65M06
Key words: Burgers equation / inverse design / optimization / numerics / descent method
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.