Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Optimizing Coarse Propagators in Parareal Algorithms

Bangti Jin, Qingle Lin and Zhi Zhou
SIAM Journal on Scientific Computing 47 (2) A735 (2025)
https://doi.org/10.1137/23M1619733

A fast third order algorithm for two dimensional inhomogeneous fractional parabolic partial differential equations

M. Yousuf and Shahzad Sarwar
International Journal of Computer Mathematics 101 (1) 1 (2024)
https://doi.org/10.1080/00207160.2023.2279511

Reducing polynomial degree by one for inner-stage operators affects neither stability type nor accuracy order of the Runge–Kutta discontinuous Galerkin method

Zheng Sun
Mathematics of Computation (2024)
https://doi.org/10.1090/mcom/4037

Robust Convergence of Parareal Algorithms with Arbitrarily High-Order Fine Propagators

Jiang Yang, Zhaoming Yuan and Zhi Zhou
SSRN Electronic Journal (2022)
https://doi.org/10.2139/ssrn.4097528

A Fourth-Order Time-Stepping Method for Two-Dimensional, Distributed-Order, Space-Fractional, Inhomogeneous Parabolic Equations

Muhammad Yousuf, Khaled M. Furati and Abdul Q. M. Khaliq
Fractal and Fractional 6 (10) 592 (2022)
https://doi.org/10.3390/fractalfract6100592

Error Analysis of Multirate Leapfrog-Type Methods for Second-Order Semilinear Odes

Constantin Carle and Marlis Hochbruck
SIAM Journal on Numerical Analysis 60 (5) 2897 (2022)
https://doi.org/10.1137/21M1427255

Arbitrarily High-Order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen–Cahn Equations

Jiang Yang, Zhaoming Yuan and Zhi Zhou
Journal of Scientific Computing 90 (2) (2022)
https://doi.org/10.1007/s10915-021-01746-y

The Use of Partial Fractional Form of A-Stable Padé Schemes for the Solution of Fractional Diffusion Equation with Application in Option Pricing

H. Ghafouri, M. Ranjbar and A. Khani
Computational Economics 56 (4) 695 (2020)
https://doi.org/10.1007/s10614-019-09927-6

Energy-corrected FEM and explicit time-stepping for parabolic problems

Piotr Swierczynski and Barbara Wohlmuth
ESAIM: Mathematical Modelling and Numerical Analysis 53 (6) 1893 (2019)
https://doi.org/10.1051/m2an/2019038

Unified error analysis for nonconforming space discretizations of wave-type equations

David Hipp, Marlis Hochbruck and Christian Stohrer
IMA Journal of Numerical Analysis 39 (3) 1206 (2019)
https://doi.org/10.1093/imanum/dry036

Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods

I Alonso-Mallo, B Cano and N Reguera
IMA Journal of Numerical Analysis 38 (3) 1294 (2018)
https://doi.org/10.1093/imanum/drx047

First-Order Partial Differential Equation with a Nonlocal Boundary Condition

Abdullah S. Erdogan and Sueda N. Tekalan
Numerical Functional Analysis and Optimization 38 (10) 1373 (2017)
https://doi.org/10.1080/01630563.2017.1317002

Implicit Runge--Kutta Methods and Discontinuous Galerkin Discretizations for Linear Maxwell's Equations

Marlis Hochbruck and Tomislav Pažur
SIAM Journal on Numerical Analysis 53 (1) 485 (2015)
https://doi.org/10.1137/130944114

Error Analysis of Explicit Partitioned Runge–Kutta Schemes for Conservation Laws

Willem Hundsdorfer, David I. Ketcheson and Igor Savostianov
Journal of Scientific Computing 63 (3) 633 (2015)
https://doi.org/10.1007/s10915-014-9906-1

Finite-difference method for the hyperbolic system of equations with nonlocal boundary conditions

Allaberen Ashyralyev and Rahat Prenov
Advances in Difference Equations 2014 (1) (2014)
https://doi.org/10.1186/1687-1847-2014-26

Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems

A. Arrarás, L. Portero and I. Yotov
Journal of Computational Physics 257 1321 (2014)
https://doi.org/10.1016/j.jcp.2013.08.013

Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence

Georgios Akrivis, Charalambos Makridakis and Ricardo H. Nochetto
Numerische Mathematik 118 (3) 429 (2011)
https://doi.org/10.1007/s00211-011-0363-6

Extrapolated Implicit-Explicit Time Stepping

Emil M. Constantinescu and Adrian Sandu
SIAM Journal on Scientific Computing 31 (6) 4452 (2010)
https://doi.org/10.1137/080732833

A posteriori error estimates by recovered gradients in parabolic finite element equations

D. Leykekhman and L. B. Wahlbin
BIT Numerical Mathematics 48 (3) 585 (2008)
https://doi.org/10.1007/s10543-008-0169-9

IMEX extensions of linear multistep methods with general monotonicity and boundedness properties

Willem Hundsdorfer and Steven J. Ruuth
Journal of Computational Physics 225 (2) 2016 (2007)
https://doi.org/10.1016/j.jcp.2007.03.003

High order smoothing schemes for inhomogeneous parabolic problems with applications in option pricing

A.Q.M. Khaliq, B.A. Wade, M. Yousuf and J. Vigo‐Aguiar
Numerical Methods for Partial Differential Equations 23 (5) 1249 (2007)
https://doi.org/10.1002/num.20228

Fast Runge-Kutta approximation of inhomogeneous parabolic equations

María López-Fernández, Christian Lubich, Cesar Palencia and Achim Schädle
Numerische Mathematik 102 (2) 277 (2005)
https://doi.org/10.1007/s00211-005-0624-3

A posteriorierror estimates for a nonconforming finite element discretization of the heat equation

Serge Nicaise and Nadir Soualem
ESAIM: Mathematical Modelling and Numerical Analysis 39 (2) 319 (2005)
https://doi.org/10.1051/m2an:2005009

Smoothing with positivity‐preserving Padé schemes for parabolic problems with nonsmooth data

B. A. Wade, A. Q. M. Khaliq, M. Siddique and M. Yousuf
Numerical Methods for Partial Differential Equations 21 (3) 553 (2005)
https://doi.org/10.1002/num.20039

Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations

K. Debrabant and K. Strehmel
Applied Numerical Mathematics 53 (2-4) 213 (2005)
https://doi.org/10.1016/j.apnum.2004.08.023

Spectral-fractional step Runge–Kutta discretizations for initial boundary value problems with time dependent boundary conditions

I. Alonso-Mallo, B. Cano and J. Jorge
Mathematics of Computation 73 (248) 1801 (2004)
https://doi.org/10.1090/S0025-5718-04-01660-6

Optimal orders of convergence for Runge–Kutta methods and linear, initial boundary value problems

I. Alonso-Mallo and C. Palencia
Applied Numerical Mathematics 44 (1-2) 1 (2003)
https://doi.org/10.1016/S0168-9274(02)00110-1

Computational Science and Its Applications — ICCSA 2003

D. A. Voss, A. Q. M. Khaliq, S. H. K. Kazmi and H. He
Lecture Notes in Computer Science, Computational Science and Its Applications — ICCSA 2003 2669 199 (2003)
https://doi.org/10.1007/3-540-44842-X_21

The Correct Formulation of Intermediate Boundary Conditions for Runge--Kutta Time Integration of Initial Boundary Value Problems

D. Pathria
SIAM Journal on Scientific Computing 18 (5) 1255 (1997)
https://doi.org/10.1137/S1064827594273948

Time-stepping algorithms for semidiscretized linear parabolic PDEs based on rational approximants with distinct real poles

D. A. Voss and A. Q. M. Khaliq
Advances in Computational Mathematics 6 (1) 353 (1996)
https://doi.org/10.1007/BF02127713

Well-posed solvability of the Cauchy problem for difference equations of parabolic type

Allaberen Ashyralyev and Pavel Evseyevich Sobolevskii
Nonlinear Analysis: Theory, Methods & Applications 24 (2) 257 (1995)
https://doi.org/10.1016/0362-546X(94)E0004-Z

On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation

Ohannes Karakashian, Georgios D. Akrivis and Vassilios A. Dougalis
SIAM Journal on Numerical Analysis 30 (2) 377 (1993)
https://doi.org/10.1137/0730018

A Scheme for Parallelizing Certain Algorithms for the Linear Inhomogeneous Heat Equation

Steven M. Serbin
SIAM Journal on Scientific and Statistical Computing 13 (2) 449 (1992)
https://doi.org/10.1137/0913024

On error structures and extrapolation for stiff systems, with application in the method of lines

W. Auzinger
Computing 44 (4) 331 (1990)
https://doi.org/10.1007/BF02241272

Upper semicontinuity of attractors for approximations of semigroups and partial differential equations

Jack K. Hale, Xiao-Biao Lin and Geneviève Raugel
Mathematics of Computation 50 (181) 89 (1988)
https://doi.org/10.1090/S0025-5718-1988-0917820-X

Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations

J. M. Sanz-Serna, J. G. Verwer and W. H. Hundsdorfer
Numerische Mathematik 50 (4) 405 (1986)
https://doi.org/10.1007/BF01396661

Galerkin Finite Element Methods for Parabolic Problems

Lecture Notes in Mathematics, Galerkin Finite Element Methods for Parabolic Problems 1054 106 (1984)
https://doi.org/10.1007/BFb0071798