Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A new approach to the mean-field limit of Vlasov–Fokker–Planck equations

Didier Bresch, Pierre-Emmanuel Jabin and Juan Soler
Analysis & PDE 18 (4) 1037 (2025)
https://doi.org/10.2140/apde.2025.18.1037

Exponential Contractivity and Propagation of Chaos for Langevin Dynamics of McKean-Vlasov Type with Lévy Noises

Yao Liu, Jian Wang and Meng-ge Zhang
Potential Analysis 62 (1) 27 (2025)
https://doi.org/10.1007/s11118-024-10130-y

Uniform-in-time estimates on corrections to mean field for interacting Brownian particles

Armand Bernou and Mitia Duerinckx
Probability Theory and Related Fields (2025)
https://doi.org/10.1007/s00440-025-01381-w

Uniform-in-time propagation of chaos for kinetic mean field Langevin dynamics

Fan Chen, Yiqing Lin, Zhenjie Ren and Songbo Wang
Electronic Journal of Probability 29 (none) (2024)
https://doi.org/10.1214/24-EJP1079

An entropic approach for Hamiltonian Monte Carlo: The idealized case

Pierre Monmarché
The Annals of Applied Probability 34 (2) (2024)
https://doi.org/10.1214/23-AAP2021

Exponential Entropy Dissipation for Weakly Self-Consistent Vlasov–Fokker–Planck Equations

Erhan Bayraktar, Qi Feng and Wuchen Li
Journal of Nonlinear Science 34 (1) (2024)
https://doi.org/10.1007/s00332-023-09984-0

Rate of Convergence in the Smoluchowski-Kramers Approximation for Mean-field Stochastic Differential Equations

Ta Cong Son, Dung Quang Le and Manh Hong Duong
Potential Analysis 60 (3) 1031 (2024)
https://doi.org/10.1007/s11118-023-10078-5

Contraction and Convergence Rates for Discretized Kinetic Langevin Dynamics

Benedict J. Leimkuhler, Daniel Paulin and Peter A. Whalley
SIAM Journal on Numerical Analysis 62 (3) 1226 (2024)
https://doi.org/10.1137/23M1556289

Global contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos

Katharina Schuh
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 60 (2) (2024)
https://doi.org/10.1214/22-AIHP1337

Ergodicity of the underdamped mean-field Langevin dynamics

Anna Kazeykina, Zhenjie Ren, Xiaolu Tan and Junjian Yang
The Annals of Applied Probability 34 (3) (2024)
https://doi.org/10.1214/23-AAP2036

Global-in-time mean-field convergence for singular Riesz-type diffusive flows

Matthew Rosenzweig and Sylvia Serfaty
The Annals of Applied Probability 33 (2) (2023)
https://doi.org/10.1214/22-AAP1833

Hypocoercivity and global hypoellipticity for the kinetic Fokker-Planck equation in $ H^k $ spaces

Chaoen Zhang
Kinetic and Related Models (2023)
https://doi.org/10.3934/krm.2023027

Impact of interaction forces in first order many-agent systems for swarm manufacturing

Ferdinando Auricchio, Massimo Carraturo, Giuseppe Toscani and Mattia Zanella
Discrete and Continuous Dynamical Systems - S (2023)
https://doi.org/10.3934/dcdss.2023173

Almost sure contraction for diffusions on Rd. Application to generalized Langevin diffusions

Pierre Monmarché
Stochastic Processes and their Applications 161 316 (2023)
https://doi.org/10.1016/j.spa.2023.04.006

Optimal friction matrix for underdamped Langevin sampling

Martin Chak, Nikolas Kantas, Tony Lelièvre and Grigorios A. Pavliotis
ESAIM: Mathematical Modelling and Numerical Analysis 57 (6) 3335 (2023)
https://doi.org/10.1051/m2an/2023083

Coupling approach for exponential ergodicity of stochastic Hamiltonian systems with Lévy noises

Jianhai Bao and Jian Wang
Stochastic Processes and their Applications 146 114 (2022)
https://doi.org/10.1016/j.spa.2021.12.014

Propagation of chaos: A review of models, methods and applications. Ⅱ. Applications

Louis-Pierre Chaintron and Antoine Diez
Kinetic and Related Models 15 (6) 1017 (2022)
https://doi.org/10.3934/krm.2022018

Entropic turnpike estimates for the kinetic Schrödinger problem

Alberto Chiarini, Giovanni Conforti, Giacomo Greco and Zhenjie Ren
Electronic Journal of Probability 27 (none) (2022)
https://doi.org/10.1214/22-EJP850

Convergence rates for the Vlasov-Fokker-Planck equation and uniform in time propagation of chaos in non convex cases

Arnaud Guillin, Pierre Le Bris and Pierre Monmarché
Electronic Journal of Probability 27 (none) (2022)
https://doi.org/10.1214/22-EJP853

The kinetic Fokker-Planck equation with mean field interaction

Arnaud Guillin, Wei Liu, Liming Wu and Chaoen Zhang
Journal de Mathématiques Pures et Appliquées 150 1 (2021)
https://doi.org/10.1016/j.matpur.2021.04.001

Analysis of the feedback particle filter with diffusion map based approximation of the gain

Sahani Pathiraja and Wilhelm Stannat
Foundations of Data Science 3 (3) 615 (2021)
https://doi.org/10.3934/fods.2021023

Long-Time Behaviors of Mean-Field Interacting Particle Systems Related to McKean–Vlasov Equations

Wei Liu, Liming Wu and Chaoen Zhang
Communications in Mathematical Physics 387 (1) 179 (2021)
https://doi.org/10.1007/s00220-021-04198-5

Uniform Long-Time and Propagation of Chaos Estimates for Mean Field Kinetic Particles in Non-convex Landscapes

Arnaud Guillin and Pierre Monmarché
Journal of Statistical Physics 185 (2) (2021)
https://doi.org/10.1007/s10955-021-02839-6

High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion.

Pierre Monmarché
Electronic Journal of Statistics 15 (2) (2021)
https://doi.org/10.1214/21-EJS1888

Directed chain stochastic differential equations

Nils Detering, Jean-Pierre Fouque and Tomoyuki Ichiba
Stochastic Processes and their Applications 130 (4) 2519 (2020)
https://doi.org/10.1016/j.spa.2019.07.009

A λ-convexity based proof for the propagation of chaos for weakly interacting stochastic particles

J.A. Carrillo, M.G. Delgadino and G.A. Pavliotis
Journal of Functional Analysis 279 (10) 108734 (2020)
https://doi.org/10.1016/j.jfa.2020.108734

From the master equation to mean field game limit theory: Large deviations and concentration of measure

François Delarue, Daniel Lacker and Kavita Ramanan
The Annals of Probability 48 (1) (2020)
https://doi.org/10.1214/19-AOP1359

Long time behavior of a mean-field model of interacting neurons

Quentin Cormier, Etienne Tanré and Romain Veltz
Stochastic Processes and their Applications 130 (5) 2553 (2020)
https://doi.org/10.1016/j.spa.2019.07.010

On sampling from a log-concave density using kinetic Langevin diffusions

Arnak S. Dalalyan and Lionel Riou-Durand
Bernoulli 26 (3) (2020)
https://doi.org/10.3150/19-BEJ1178

Parameter and dimension dependence of convergence rates to stationarity for reflecting Brownian motions

Sayan Banerjee and Amarjit Budhiraja
The Annals of Applied Probability 30 (5) (2020)
https://doi.org/10.1214/19-AAP1550

Couplings and quantitative contraction rates for Langevin dynamics

Andreas Eberle, Arnaud Guillin and Raphael Zimmer
The Annals of Probability 47 (4) (2019)
https://doi.org/10.1214/18-AOP1299

Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities

Patrick Cattiaux, Arnaud Guillin, Pierre Monmarché and Chaoen Zhang
Journal of Functional Analysis 277 (11) 108288 (2019)
https://doi.org/10.1016/j.jfa.2019.108288

The Vlasov-Fokker-Planck equation in non-convex landscapes: convergence to equilibrium

Manh Hong Duong and Julian Tugaut
Electronic Communications in Probability 23 (none) (2018)
https://doi.org/10.1214/18-ECP116

Convergence to equilibrium in the free Fokker–Planck equation with a double-well potential

Catherine Donati-Martin, Benjamin Groux and Mylène Maïda
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 54 (4) (2018)
https://doi.org/10.1214/17-AIHP856

On the stability and the uniform propagation of chaos properties of Ensemble Kalman–Bucy filters

P. Del Moral and J. Tugaut
The Annals of Applied Probability 28 (2) (2018)
https://doi.org/10.1214/17-AAP1317

Quantitative estimates of propagation of chaos for stochastic systems with $$W^{-1,\infty }$$ W - 1 , ∞ kernels

Pierre-Emmanuel Jabin and Zhenfu Wang
Inventiones mathematicae 214 (1) 523 (2018)
https://doi.org/10.1007/s00222-018-0808-y

Long time dynamics and disorder-induced traveling waves in the stochastic Kuramoto model

E. Luçon and C. Poquet
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 53 (3) (2017)
https://doi.org/10.1214/16-AIHP753

Trend to Equilibrium for a Delay Vlasov--Fokker--Planck Equation and Explicit Decay Estimates

Axel Klar, Lisa Kreusser and Oliver Tse
SIAM Journal on Mathematical Analysis 49 (4) 3277 (2017)
https://doi.org/10.1137/15M105402X

Transition from Gaussian to non-Gaussian fluctuations for mean-field diffusions in spatial interaction

Eric Luçon and Wilhelm Stannat
The Annals of Applied Probability 26 (6) (2016)
https://doi.org/10.1214/16-AAP1194

Stationary solutions of the Vlasov–Fokker–Planck equation: Existence, characterization and phase-transition

M.H. Duong and J. Tugaut
Applied Mathematics Letters 52 38 (2016)
https://doi.org/10.1016/j.aml.2015.08.003

On a toy model of interacting neurons

Nicolas Fournier and Eva Löcherbach
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 52 (4) (2016)
https://doi.org/10.1214/15-AIHP701

Long time behaviour and particle approximation of a generalised Vlasov dynamic

Manh Hong Duong
Nonlinear Analysis: Theory, Methods & Applications 127 1 (2015)
https://doi.org/10.1016/j.na.2015.06.018

A new approach to quantitative propagation of chaos for drift, diffusion and jump processes

Stéphane Mischler, Clément Mouhot and Bernt Wennberg
Probability Theory and Related Fields 161 (1-2) 1 (2015)
https://doi.org/10.1007/s00440-013-0542-8

Long time behaviour and stationary regime of memory gradient diffusions

Sébastien Gadat and Fabien Panloup
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 50 (2) (2014)
https://doi.org/10.1214/12-AIHP536

Dimensional contraction via Markov transportation distance

François Bolley, Ivan Gentil and Arnaud Guillin
Journal of the London Mathematical Society 90 (1) 309 (2014)
https://doi.org/10.1112/jlms/jdu027

Mean field limit for disordered diffusions with singular interactions

Eric Luçon and Wilhelm Stannat
The Annals of Applied Probability 24 (5) (2014)
https://doi.org/10.1214/13-AAP968

GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles

Manh Hong Duong, Mark A Peletier and Johannes Zimmer
Nonlinearity 26 (11) 2951 (2013)
https://doi.org/10.1088/0951-7715/26/11/2951

Total variation estimates for the TCP process

Jean-Baptiste Bardet, Alejandra Christen, Arnaud Guillin, Florent Malrieu and Pierre-André Zitt
Electronic Journal of Probability 18 (none) (2013)
https://doi.org/10.1214/EJP.v18-1720

Uniform Convergence to Equilibrium for Granular Media

François Bolley, Ivan Gentil and Arnaud Guillin
Archive for Rational Mechanics and Analysis 208 (2) 429 (2013)
https://doi.org/10.1007/s00205-012-0599-z

Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation

Benjamin Jourdain and Julien Reygner
Stochastic Partial Differential Equations: Analysis and Computations 1 (3) 455 (2013)
https://doi.org/10.1007/s40072-013-0014-2

Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality

Arnaud Guillin and Feng-Yu Wang
Journal of Differential Equations 253 (1) 20 (2012)
https://doi.org/10.1016/j.jde.2012.03.014

Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations

François Bolley, Ivan Gentil and Arnaud Guillin
Journal of Functional Analysis 263 (8) 2430 (2012)
https://doi.org/10.1016/j.jfa.2012.07.007

STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING

FRANÇOIS BOLLEY, JOSÉ A. CAÑIZO and JOSÉ A. CARRILLO
Mathematical Models and Methods in Applied Sciences 21 (11) 2179 (2011)
https://doi.org/10.1142/S0218202511005702

Concentration inequalities for mean field particle models

Pierre Del Moral and Emmanuel Rio
The Annals of Applied Probability 21 (3) (2011)
https://doi.org/10.1214/10-AAP716

An introduction to probabilistic methods with applications

Pierre Del Moral and Nicolas G. Hadjiconstantinou
ESAIM: Mathematical Modelling and Numerical Analysis 44 (5) 805 (2010)
https://doi.org/10.1051/m2an/2010043