Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

GeOT: a spatially explicit framework for evaluating spatio-temporal predictions

Nina Wiedemann, Théo Uscidda and Martin Raubal
International Journal of Geographical Information Science 1 (2025)
https://doi.org/10.1080/13658816.2025.2481101

On the convergence of discrete dynamic unbalanced transport models

Bowen Li and Jun Zou
ESAIM: Mathematical Modelling and Numerical Analysis 58 (3) 957 (2024)
https://doi.org/10.1051/m2an/2024024

A relaxation viewpoint to Unbalanced Optimal Transport: Duality, optimality and Monge formulation

Giuseppe Savaré and Giacomo Enrico Sodini
Journal de Mathématiques Pures et Appliquées 188 114 (2024)
https://doi.org/10.1016/j.matpur.2024.05.009

Unbalanced regularized optimal mass transport with applications to fluid flows in the brain

Xinan Chen, Helene Benveniste and Allen R. Tannenbaum
Scientific Reports 14 (1) (2024)
https://doi.org/10.1038/s41598-023-50874-y

A Wasserstein distance and total variation regularized model for image reconstruction problems

Yiming Gao
Inverse Problems and Imaging (2023)
https://doi.org/10.3934/ipi.2023045

A Fast Solver for Generalized Optimal Transport Problems Based on Dynamical System and Algebraic Multigrid

Jun Hu, Hao Luo and Zihang Zhang
Journal of Scientific Computing 97 (1) (2023)
https://doi.org/10.1007/s10915-023-02272-9

Universal consistency of Wasserstein k-NN classifier: a negative and some positive results

Donlapark Ponnoprat
Information and Inference: A Journal of the IMA 12 (3) 1997 (2023)
https://doi.org/10.1093/imaiai/iaad027

The Square Root Normal Field Distance and Unbalanced Optimal Transport

Martin Bauer, Emmanuel Hartman and Eric Klassen
Applied Mathematics & Optimization 85 (3) (2022)
https://doi.org/10.1007/s00245-022-09867-y

On the extremal points of the ball of the Benamou–Brenier energy

Kristian Bredies, Marcello Carioni, Silvio Fanzon and Francisco Romero
Bulletin of the London Mathematical Society 53 (5) 1436 (2021)
https://doi.org/10.1112/blms.12509

A Stochastic Multi-layer Algorithm for Semi-discrete Optimal Transport with Applications to Texture Synthesis and Style Transfer

Arthur Leclaire and Julien Rabin
Journal of Mathematical Imaging and Vision 63 (2) 282 (2021)
https://doi.org/10.1007/s10851-020-00975-4

An optimal transport approach for solving dynamic inverse problems in spaces of measures

Kristian Bredies and Silvio Fanzon
ESAIM: Mathematical Modelling and Numerical Analysis 54 (6) 2351 (2020)
https://doi.org/10.1051/m2an/2020056

Template-Based Image Reconstruction from Sparse Tomographic Data

Lukas F. Lang, Sebastian Neumayer, Ozan Öktem and Carola-Bibiane Schönlieb
Applied Mathematics & Optimization 82 (3) 1081 (2020)
https://doi.org/10.1007/s00245-019-09573-2

Geometric Partial Differential Equations - Part I

Behrend Heeren, Martin Rumpf, Max Wardetzky and Benedikt Wirth
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part I 21 621 (2020)
https://doi.org/10.1016/bs.hna.2019.06.005

Regularization of inverse problems via time discrete geodesics in image spaces

Sebastian Neumayer, Johannes Persch and Gabriele Steidl
Inverse Problems 35 (5) 055005 (2019)
https://doi.org/10.1088/1361-6420/ab038a

Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems

Bernhard Schmitzer
SIAM Journal on Scientific Computing 41 (3) A1443 (2019)
https://doi.org/10.1137/16M1106018

Unbalanced optimal transport: Dynamic and Kantorovich formulations

Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer and François-Xavier Vialard
Journal of Functional Analysis 274 (11) 3090 (2018)
https://doi.org/10.1016/j.jfa.2018.03.008

Indirect Image Registration with Large Diffeomorphic Deformations

Chong Chen and Ozan Öktem
SIAM Journal on Imaging Sciences 11 (1) 575 (2018)
https://doi.org/10.1137/17M1134627

The Camassa–Holm equation as an incompressible Euler equation: A geometric point of view

Thomas Gallouët and François-Xavier Vialard
Journal of Differential Equations 264 (7) 4199 (2018)
https://doi.org/10.1016/j.jde.2017.12.008

An Interpolating Distance Between Optimal Transport and Fisher–Rao Metrics

Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer and François-Xavier Vialard
Foundations of Computational Mathematics 18 (1) 1 (2018)
https://doi.org/10.1007/s10208-016-9331-y

Scale Space and Variational Methods in Computer Vision

Jan Maas, Martin Rumpf and Stefan Simon
Lecture Notes in Computer Science, Scale Space and Variational Methods in Computer Vision 10302 563 (2017)
https://doi.org/10.1007/978-3-319-58771-4_45

Transport Between RGB Images Motivated by Dynamic Optimal Transport

Jan Henrik Fitschen, Friederike Laus and Gabriele Steidl
Journal of Mathematical Imaging and Vision 56 (3) 409 (2016)
https://doi.org/10.1007/s10851-016-0644-x

A Smoothed Dual Approach for Variational Wasserstein Problems

Marco Cuturi and Gabriel Peyré
SIAM Journal on Imaging Sciences 9 (1) 320 (2016)
https://doi.org/10.1137/15M1032600