The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Philippe Angot
ESAIM: M2AN, 52 5 (2018) 1875-1911
Published online: 2018-12-11
This article has been cited by the following article(s):
20 articles
Modeling of viscous fluid flow with a porous layer
Dalabaev Umurdin South Florida Journal of Development 6 (5) e5326 (2025) https://doi.org/10.46932/sfjdv6n5-066
A semi-Lagrangian method for the direct numerical simulation of crystallization and precipitation at the pore scale
Sarah Perez, Jean-Matthieu Etancelin and Philippe Poncet Frontiers in Earth Science 13 (2025) https://doi.org/10.3389/feart.2025.1493305
Alberto Girelli (2024) https://doi.org/10.21203/rs.3.rs-3956346/v1
ОБЗОР МОДЕЛИ СТОКСА-ДАРСИ
BULLETIN Series of Physics & Mathematical Sciences 86 (2) (2024) https://doi.org/10.51889/2959-5894.2024.86.2.003
Yu-xuan Sun, Lin-xian Chi, Yan Wang, Jing Li and Sheng-wen Mei 6255 (2023) https://doi.org/10.1007/978-981-99-1964-2_536
A Study of Numerical Pollution of the Decoupled Algorithm for the Convection Model in Superposed Fluid and Porous Layers
Yuhong Zhang, Yao Rong and Haibiao Zheng SIAM Journal on Numerical Analysis 61 (2) 1018 (2023) https://doi.org/10.1137/22M1469699
Well-posedness of generalized Stokes-Brinkman equations modeling moving solid phases
Nisachon Kumankat and Kanognudge Wuttanachamsri Electronic Research Archive 31 (3) 1641 (2023) https://doi.org/10.3934/era.2023085
The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type
Guanyu Zhou, Feifei Jing and Takahito Kashiwabara Numerische Mathematik 153 (4) 729 (2023) https://doi.org/10.1007/s00211-023-01348-w
Jian Hui, Jun-chao Li, Xue-li Liu and Xin-bian Lu 2083 (2023) https://doi.org/10.1007/978-981-99-1964-2_178
Pressure-correction projection method for modelling the incompressible fluid flow in porous media
Kirill M. Terekhov Russian Journal of Numerical Analysis and Mathematical Modelling 38 (4) 241 (2023) https://doi.org/10.1515/rnam-2023-0019
Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions
C. Bousbiat, Y. Daikh, S. Maarouf and D. Yakoubi Calcolo 60 (3) (2023) https://doi.org/10.1007/s10092-023-00530-8
Analysis of the Stokes–Darcy problem with generalised interface conditions
Elissa Eggenweiler, Marco Discacciati and Iryna Rybak ESAIM: Mathematical Modelling and Numerical Analysis 56 (2) 727 (2022) https://doi.org/10.1051/m2an/2022025
A Mathematical Description of the Flow in a Spherical Lymph Node
Giulia Giantesio, Alberto Girelli and Alessandro Musesti Bulletin of Mathematical Biology 84 (12) (2022) https://doi.org/10.1007/s11538-022-01103-6
Model adaptation for non-linear elliptic equations in mixed form: existence of solutions and numerical strategies
Alessio Fumagalli and Francesco Saverio Patacchini ESAIM: Mathematical Modelling and Numerical Analysis 56 (2) 565 (2022) https://doi.org/10.1051/m2an/2022016
Flow Simulation in a combined Region
Umurdin Dalabaev and D. Bazarov E3S Web of Conferences 264 01016 (2021) https://doi.org/10.1051/e3sconf/202126401016
Umurdin Dalabaev 2365 060015 (2021) https://doi.org/10.1063/5.0057568
A nonlinear asymptotic model for the inertial flow at a fluid-porous interface
Philippe Angot, Benoît Goyeau and J. Alberto Ochoa-Tapia Advances in Water Resources 149 103798 (2021) https://doi.org/10.1016/j.advwatres.2020.103798
An analysis on the penalty and Nitsche's methods for the Stokes–Darcy system with a curved interface
Guanyu Zhou, Takahito Kashiwabara, Issei Oikawa, Eric Chung and Ming-Cheng Shiue Applied Numerical Mathematics 165 83 (2021) https://doi.org/10.1016/j.apnum.2021.02.006
Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
Eduard Rohan, Jana Turjanicová and Vladimír Lukeš Computers & Structures 251 106404 (2021) https://doi.org/10.1016/j.compstruc.2020.106404
On the Shape Differentiability of Objectives: A Lagrangian Approach and the Brinkman Problem
José Rodrigo González Granada, Joachim Gwinner and Victor A. Kovtunenko Axioms 7 (4) 76 (2018) https://doi.org/10.3390/axioms7040076