Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Local quadratic convergence of the SQP method for an optimal control problem governed by a regularized fracture propagation model

Andreas Hehl and Ira Neitzel
ESAIM: Control, Optimisation and Calculus of Variations 30 68 (2024)
https://doi.org/10.1051/cocv/2024052

Employing Williams’ series for the identification of fracture mechanics parameters from phase-field simulations

Leon M. Kolditz, Samy Dray, Viktor Kosin, Amélie Fau, François Hild and Thomas Wick
Engineering Fracture Mechanics 307 110298 (2024)
https://doi.org/10.1016/j.engfracmech.2024.110298

A coupled high-accuracy phase-field fluid–structure interaction framework for Stokes fluid-filled fracture surrounded by an elastic medium

Henry von Wahl and Thomas Wick
Results in Applied Mathematics 22 100455 (2024)
https://doi.org/10.1016/j.rinam.2024.100455

Diffuse interface modeling of non‐isothermal Stokes‐Darcy flow with immersed transmissibility conditions

Hyoung Suk Suh
International Journal for Numerical Methods in Engineering 125 (24) (2024)
https://doi.org/10.1002/nme.7589

Convergence of critical points for a phase-field approximation of 1D cohesive fracture energies

Marco Bonacini and Flaviana Iurlano
Calculus of Variations and Partial Differential Equations 63 (8) (2024)
https://doi.org/10.1007/s00526-024-02786-6

$$\Gamma $$-convergence and stochastic homogenisation of singularly-perturbed elliptic functionals

Annika Bach, Roberta Marziani and Caterina Ida Zeppieri
Calculus of Variations and Partial Differential Equations 62 (7) (2023)
https://doi.org/10.1007/s00526-023-02540-4

On the relation of Gamma-convergence parameters for pressure-driven quasi-static phase-field fracture

Leon Kolditz and Katrin Mang
Examples and Counterexamples 2 100047 (2022)
https://doi.org/10.1016/j.exco.2022.100047

Space-time formulation, discretization, and computational performance studies for phase-field fracture optimal control problems

D. Khimin, M.C. Steinbach and T. Wick
Journal of Computational Physics 470 111554 (2022)
https://doi.org/10.1016/j.jcp.2022.111554

Anisotropic mesh adaptation for region-based segmentation accounting for image spatial information

Matteo Giacomini and Simona Perotto
Computers & Mathematics with Applications 121 1 (2022)
https://doi.org/10.1016/j.camwa.2022.06.025

A comparative review of peridynamics and phase-field models for engineering fracture mechanics

Patrick Diehl, Robert Lipton, Thomas Wick and Mayank Tyagi
Computational Mechanics 69 (6) 1259 (2022)
https://doi.org/10.1007/s00466-022-02147-0

Adaptive Mesh Refinement in Deformable Image Registration: A Posteriori Error Estimates for Primal and Mixed Formulations

Nicolas Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Willian Miranda and Ricardo Ruiz-Baier
SIAM Journal on Imaging Sciences 14 (3) 1238 (2021)
https://doi.org/10.1137/20M1364333

A quasi-monolithic phase-field description for orthotropic anisotropic fracture with adaptive mesh refinement and primal–dual active set method

Nima Noii, Meng Fan, Thomas Wick and Yan Jin
Engineering Fracture Mechanics 258 108060 (2021)
https://doi.org/10.1016/j.engfracmech.2021.108060

Random Finite-Difference Discretizations of the Ambrosio--Tortorelli Functional with Optimal Mesh-Size

Annika Bach, Marco Cicalese and Matthias Ruf
SIAM Journal on Mathematical Analysis 53 (2) 2275 (2021)
https://doi.org/10.1137/20M1312927

Approximation of the Mumford–Shah functional by phase fields of bounded variation

Sandro Belz and Kristian Bredies
Analysis and Applications 19 (02) 183 (2021)
https://doi.org/10.1142/S0219530520500190

Anisotropic Adapted Meshes for Image Segmentation: Application to Three-Dimensional Medical Data

Francesco Clerici, Nicola Ferro, Stefania Marconi, et al.
SIAM Journal on Imaging Sciences 13 (4) 2189 (2020)
https://doi.org/10.1137/20M1348303

A derivation of Griffith functionals from discrete finite-difference models

Vito Crismale, Giovanni Scilla and Francesco Solombrino
Calculus of Variations and Partial Differential Equations 59 (6) (2020)
https://doi.org/10.1007/s00526-020-01858-7

An adaptive global–local approach for phase-field modeling of anisotropic brittle fracture

Nima Noii, Fadi Aldakheel, Thomas Wick and Peter Wriggers
Computer Methods in Applied Mechanics and Engineering 361 112744 (2020)
https://doi.org/10.1016/j.cma.2019.112744

Mesh adaptation-aided image segmentation

Alberto Silvio Chiappa, Stefano Micheletti, Riccardo Peli and Simona Perotto
Communications in Nonlinear Science and Numerical Simulation 74 147 (2019)
https://doi.org/10.1016/j.cnsns.2019.03.010

Phase-field modeling through iterative splitting of hydraulic fractures in a poroelastic medium

A. Mikelić, M. F. Wheeler and T. Wick
GEM - International Journal on Geomathematics 10 (1) (2019)
https://doi.org/10.1007/s13137-019-0113-y

An Application of Quadratic Measure Filters to the Segmentation of Chorio-Retinal OCT Data

Marcus Wagner
Journal of Mathematical Imaging and Vision 60 (2) 216 (2018)
https://doi.org/10.1007/s10851-017-0752-2

Robust variational segmentation of 3D bone CT data with thin cartilage interfaces

Tarun Gangwar, Jeff Calder, Takashi Takahashi, Joan E. Bechtold and Dominik Schillinger
Medical Image Analysis 47 95 (2018)
https://doi.org/10.1016/j.media.2018.04.003

Energy approach to brittle fracture in strain-gradient modelling

Luca Placidi and Emilio Barchiesi
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2210) 20170878 (2018)
https://doi.org/10.1098/rspa.2017.0878

Crack nucleation in variational phase-field models of brittle fracture

E. Tanné, T. Li, B. Bourdin, J.-J. Marigo and C. Maurini
Journal of the Mechanics and Physics of Solids 110 80 (2018)
https://doi.org/10.1016/j.jmps.2017.09.006

A diffuse interface method for the Navier–Stokes/Darcy equations: Perfusion profile for a patient-specific human liver based on MRI scans

Stein K.F. Stoter, Peter Müller, Luca Cicalese, Massimiliano Tuveri, Dominik Schillinger and Thomas J.R. Hughes
Computer Methods in Applied Mechanics and Engineering 321 70 (2017)
https://doi.org/10.1016/j.cma.2017.04.002

Hybrid adaptation for detecting skin in color images

Michal Kawulok, Jolanta Kawulok, Jakub Nalepa, Bogdan Smolka and Eduardo Bayro-Corrochano
Intelligent Data Analysis 20 (s1) S121 (2016)
https://doi.org/10.3233/IDA-160850

Reprint of Solution of Ambrosio–Tortorelli model for image segmentation by generalized relaxation method

Pasqua D’Ambra and Gaetano Tartaglione
Communications in Nonlinear Science and Numerical Simulation 21 (1-3) 225 (2015)
https://doi.org/10.1016/j.cnsns.2014.10.018

Solution of Ambrosio–Tortorelli model for image segmentation by generalized relaxation method

Pasqua D’Ambra and Gaetano Tartaglione
Communications in Nonlinear Science and Numerical Simulation 20 (3) 819 (2015)
https://doi.org/10.1016/j.cnsns.2014.06.036

A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework

Michael J. Borden, Thomas J.R. Hughes, Chad M. Landis and Clemens V. Verhoosel
Computer Methods in Applied Mechanics and Engineering 273 100 (2014)
https://doi.org/10.1016/j.cma.2014.01.016

An augmented-Lagrangian method for the phase-field approach for pressurized fractures

M.F. Wheeler, T. Wick and W. Wollner
Computer Methods in Applied Mechanics and Engineering 271 69 (2014)
https://doi.org/10.1016/j.cma.2013.12.005

A Nash-game approach to joint image restoration and segmentation

Moez Kallel, Rajae Aboulaich, Abderrahmane Habbal and Maher Moakher
Applied Mathematical Modelling 38 (11-12) 3038 (2014)
https://doi.org/10.1016/j.apm.2013.11.034

Multimodal image registration by elastic matching of edge sketches via optimal control

Angel Angelov and Marcus Wagner
Journal of Industrial & Management Optimization 10 (2) 567 (2014)
https://doi.org/10.3934/jimo.2014.10.567

Crack patterns obtained by unidirectional drying of a colloidal suspension in a capillary tube: experiments and numerical simulations using a two-dimensional variational approach

C. Maurini, B. Bourdin, G. Gauthier and V. Lazarus
International Journal of Fracture 184 (1-2) 75 (2013)
https://doi.org/10.1007/s10704-013-9824-5

A Novel Technique for Wideband Spectrum Sensing in Cognitive Radio Through Phase-Field Segmentation

Mohammad Eslami and Seyed Mohammad-Sajad Sadough
Wireless Personal Communications 68 (1) 115 (2013)
https://doi.org/10.1007/s11277-011-0442-0

A phase-field description of dynamic brittle fracture

Michael J. Borden, Clemens V. Verhoosel, Michael A. Scott, Thomas J.R. Hughes and Chad M. Landis
Computer Methods in Applied Mechanics and Engineering 217-220 77 (2012)
https://doi.org/10.1016/j.cma.2012.01.008

A discretization method for the numerical solution of Dieudonné–Rashevsky type problems with application to edge detection within noisy image data

Lucas Franek, Marzena Franek, Helmut Maurer and Marcus Wagner
Optimal Control Applications and Methods 33 (3) 276 (2012)
https://doi.org/10.1002/oca.996

The Mumford–Shah variational model for image segmentation: An overview of the theory, implementation and use

Alfonso Vitti
ISPRS Journal of Photogrammetry and Remote Sensing 69 50 (2012)
https://doi.org/10.1016/j.isprsjprs.2012.02.005

Variational Models and Methods in Solid and Fluid Mechanics

B. Bourdin and G. A. Francfort
CISM International Centre for Mechanical Sciences, Variational Models and Methods in Solid and Fluid Mechanics 535 107 (2011)
https://doi.org/10.1007/978-3-7091-0983-0_3

Joint edge detection and motion estimation of cardiac MR image sequence by a phase field method

Abouzar Eslami, Mehran Jahed and Tobias Preusser
Computers in Biology and Medicine 40 (1) 21 (2010)
https://doi.org/10.1016/j.compbiomed.2009.10.004

Mumford–Shah based registration: a comparison of a level set and a phase field approach

Marc Droske, Wolfgang Ring and Martin Rumpf
Computing and Visualization in Science 12 (3) 101 (2009)
https://doi.org/10.1007/s00791-008-0084-2

Detection of Intensity and Motion Edges within Optical Flow via Multidimensional Control

Christoph Brune, Helmut Maurer and Marcus Wagner
SIAM Journal on Imaging Sciences 2 (4) 1190 (2009)
https://doi.org/10.1137/080725064

A Phase Field Method for Joint Denoising, Edge Detection, and Motion Estimation in Image Sequence Processing

T. Preusser, M. Droske, C. S. Garbe, A. Telea and M. Rumpf
SIAM Journal on Applied Mathematics 68 (3) 599 (2008)
https://doi.org/10.1137/060677409

Variational approach to the free‐discontinuity problem of inverse crack identification

R. Tsotsova
Communications in Numerical Methods in Engineering 24 (12) 2216 (2008)
https://doi.org/10.1002/cnm.1078

IUTAM Symposium on Discretization Methods for Evolving Discontinuities

B. Bourdin
IUTAM Bookseries, IUTAM Symposium on Discretization Methods for Evolving Discontinuities 5 381 (2007)
https://doi.org/10.1007/978-1-4020-6530-9_22

Multiscale Joint Segmentation and Registration of Image Morphology

M. Droske and M. Rumpf
IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (12) 2181 (2007)
https://doi.org/10.1109/TPAMI.2007.1120

Pattern Recognition

Alexandru Telea, Tobias Preusser, Christoph Garbe, Marc Droske and Martin Rumpf
Lecture Notes in Computer Science, Pattern Recognition 4174 525 (2006)
https://doi.org/10.1007/11861898_53

Image segmentation based on Mumford-Shah functional

Chen Xu-feng and Guan Zhi-cheng
Journal of Zhejiang University-SCIENCE A 5 (1) 123 (2004)
https://doi.org/10.1631/BF02839324

Analysis of gradient flow of a regularized Mumford-Shah functional for image segmentation and image inpainting

Xiaobing Feng and Andreas Prohl
ESAIM: Mathematical Modelling and Numerical Analysis 38 (2) 291 (2004)
https://doi.org/10.1051/m2an:2004014

Variational Restoration and Edge Detection for Color Images

Alexander Brook, Ron Kimmel and Nir A. Sochen
Journal of Mathematical Imaging and Vision 18 (3) 247 (2003)
https://doi.org/10.1023/A:1022895410391