The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Patrick Joly , Olivier Vacus
ESAIM: M2AN, 33 3 (1999) 593-626
Published online: 2002-08-15
This article has been cited by the following article(s):
30 articles
Temporal High-Order Accurate Numerical Scheme for the Landau–Lifshitz–Gilbert Equation
Jiayun He, Lei Yang and Jiajun Zhan Mathematics 12 (8) 1179 (2024) https://doi.org/10.3390/math12081179
Complex Kraenkel-Manna-Merle system in a ferrite: N-fold Darboux transformation, generalized Darboux transformation and solitons
Yuan Shen, Bo Tian, Tian-Yu Zhou and Chong-Dong Cheng Mathematical Modelling of Natural Phenomena 18 30 (2023) https://doi.org/10.1051/mmnp/2023029
Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas
Zhi Yao, Sidhant Tiwari, Ting Lu, et al. IEEE Journal on Multiscale and Multiphysics Computational Techniques 5 5 (2020) https://doi.org/10.1109/JMMCT.2019.2959596
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 129 (2014) https://doi.org/10.1007/978-94-007-0202-8_6
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 197 (2014) https://doi.org/10.1007/978-94-007-0202-8_8
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 153 (2014) https://doi.org/10.1007/978-94-007-0202-8_7
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 3 (2014) https://doi.org/10.1007/978-94-007-0202-8_1
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 79 (2014) https://doi.org/10.1007/978-94-007-0202-8_4
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 255 (2014) https://doi.org/10.1007/978-94-007-0202-8_11
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 55 (2014) https://doi.org/10.1007/978-94-007-0202-8_3
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 103 (2014) https://doi.org/10.1007/978-94-007-0202-8_5
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 271 (2014) https://doi.org/10.1007/978-94-007-0202-8_12
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 243 (2014) https://doi.org/10.1007/978-94-007-0202-8_10
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 221 (2014) https://doi.org/10.1007/978-94-007-0202-8_9
Mathematical Models for Eddy Currents and Magnetostatics
Rachid Touzani and Jacques Rappaz Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 39 (2014) https://doi.org/10.1007/978-94-007-0202-8_2
Modelling and mathematical results arising from ferromagnetic problems
Jean Descloux, Michel Flueck and Jacques Rappaz Science China Mathematics 55 (5) 1053 (2012) https://doi.org/10.1007/s11425-011-4306-6
Regularity properties of the solutions to the 3D Maxwell–Landau–Lifshitz system in weighted Sobolev spaces
Ivan Cimrák Journal of Computational and Applied Mathematics 215 (2) 320 (2008) https://doi.org/10.1016/j.cam.2006.03.044
Higher order regularity results in 3D for the Landau–Lifshitz equation with an exchange field
Ivan Cimrák and Roger Van Keer Nonlinear Analysis: Theory, Methods & Applications 68 (5) 1316 (2008) https://doi.org/10.1016/j.na.2006.12.023
Recent Developments in the Modeling, Analysis, and Numerics of Ferromagnetism
Martin Kruzík and Andreas Prohl SIAM Review 48 (3) 439 (2006) https://doi.org/10.1137/S0036144504446187
Numerical Analysis and Its Applications
L’ubomír Baňas Lecture Notes in Computer Science, Numerical Analysis and Its Applications 3401 158 (2005) https://doi.org/10.1007/978-3-540-31852-1_17
A numerical method for the Landau–Lifshitz equation with magnetostriction
L'ubomír Baňas Mathematical Methods in the Applied Sciences 28 (16) 1939 (2005) https://doi.org/10.1002/mma.651
Dynamic susceptibility computations for thin magnetic films
Olivier Vacus and Nicolas Vukadinovic Journal of Computational and Applied Mathematics 176 (2) 263 (2005) https://doi.org/10.1016/j.cam.2004.07.016
Improved error estimates for a Maxwell‐Landau‐Lifschitz system
Marián Slodička and Ivan Cimrák PAMM 4 (1) 71 (2004) https://doi.org/10.1002/pamm.200410018
An iterative approximation scheme for the Landau–Lifshitz–Gilbert equation
Ivan Cimrák and Marián Slodička Journal of Computational and Applied Mathematics 169 (1) 17 (2004) https://doi.org/10.1016/j.cam.2003.10.022
A numerical scheme for a Maxwell–Landau–Lifshitz–Gilbert system
Marián Slodička and L'ubomı́r Baňas Applied Mathematics and Computation 158 (1) 79 (2004) https://doi.org/10.1016/j.amc.2003.08.065
Numerical study of nonlinear ferromagnetic materials
Marián Slodička and Ivan Cimrák Applied Numerical Mathematics 46 (1) 95 (2003) https://doi.org/10.1016/S0168-9274(03)00010-2
COUCHE LIMITE DANS UN MODÈLE DE FERROMAGNÉTISME
Gilles Carbou, Pierre Fabrie and Olivier Guès Communications in Partial Differential Equations 27 (7-8) 1467 (2002) https://doi.org/10.1081/PDE-120005845
Effective Boundary Conditions for Thin Ferromagnetic Layers: The One-Dimensional Model
H. Haddar and P. Joly SIAM Journal on Applied Mathematics 61 (4) 1386 (2001) https://doi.org/10.1137/S0036139998346361
Accurate discretization of a non-linear micromagnetic problem
P.B. Monk and O. Vacus Computer Methods in Applied Mechanics and Engineering 190 (40-41) 5243 (2001) https://doi.org/10.1016/S0045-7825(01)00176-1
ON THE ZERO THICKNESS LIMIT OF THIN FERROMAGNETIC FILMS WITH SURFACE ANISOTROPY ENERGY
K. HAMDACHE and M. TILIOUA Mathematical Models and Methods in Applied Sciences 11 (08) 1469 (2001) https://doi.org/10.1142/S0218202501001422