Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

An Energy Stable Well‐Balanced Scheme for the Barotropic Euler System With Gravity Under the Anelastic Scaling

K. R. Arun and Mainak Kar
Numerical Methods for Partial Differential Equations 41 (1) (2025)
https://doi.org/10.1002/num.23168

Formal derivation of a new sediment transport model using a multiscale procedure: Numerical Validation

Julien Zongo, Jean De Dieu Zabsonre and Brahima Roamba
Partial Differential Equations in Applied Mathematics 9 100606 (2024)
https://doi.org/10.1016/j.padiff.2023.100606

Low Mach Number Limit for the Degenerate Navier–Stokes Equations in Presence of Strong Stratification

Francesco Fanelli and Ewelina Zatorska
Communications in Mathematical Physics 400 (3) 1463 (2023)
https://doi.org/10.1007/s00220-022-04624-2

Dynamics of several point vortices for the lake equations

Lars Hientzsch, Christophe Lacave and Evelyne Miot
Transactions of the American Mathematical Society (2023)
https://doi.org/10.1090/tran/8995

On the influence of gravity in the dynamics of geophysical flows

Daniele Del Santo, Francesco Fanelli, Gabriele Sbaiz and Aneta Wróblewska-Kamińska
Mathematics in Engineering 5 (1) 1 (2022)
https://doi.org/10.3934/mine.2023008

Incompressible limit of the non-isentropic Navier–Stokes equations with well-prepared initial data in three-dimensional bounded domains

Song Jiang and Yaobin Ou
Journal de Mathématiques Pures et Appliquées 96 (1) 1 (2011)
https://doi.org/10.1016/j.matpur.2011.01.004

Low Mach Number Limit for the Navier–Stokes System on Unbounded Domains Under Strong Stratification

Eduard Feireisl, Antonín Novotný and Hana Petzeltová
Communications in Partial Differential Equations 35 (1) 68 (2009)
https://doi.org/10.1080/03605300903279377

AN ENERGETICALLY CONSISTENT VISCOUS SEDIMENTATION MODEL

JEAN DE DIEU ZABSONRÉ, CARINE LUCAS and ENRIQUE FERNÁNDEZ-NIETO
Mathematical Models and Methods in Applied Sciences 19 (03) 477 (2009)
https://doi.org/10.1142/S0218202509003504

Handbook of Differential Equations - Evolutionary Equations

Didier Bresch
Handbook of Differential Equations: Evolutionary Equations, Handbook of Differential Equations - Evolutionary Equations 5 1 (2009)
https://doi.org/10.1016/S1874-5717(08)00208-9

Asymptotic and numerical analysis of an inviscid bounded vortex flow at low Mach number

Anne Cadiou, Lionel Le Penven and Marc Buffat
Journal of Computational Physics 227 (18) 8268 (2008)
https://doi.org/10.1016/j.jcp.2008.05.024

Effet cosinus sur un modèle visqueux de type Saint-Venant et ses équations limites de type quasi-géostrophique et lacs

Carine Lucas
Comptes Rendus. Mathématique 345 (6) 313 (2007)
https://doi.org/10.1016/j.crma.2007.07.013

Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations

Didier Bresch and Guy Métivier
Nonlinearity 19 (3) 591 (2006)
https://doi.org/10.1088/0951-7715/19/3/004