Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Adaptive basis construction and improved error estimation for parametric nonlinear dynamical systems

Sridhar Chellappa, Lihong Feng and Peter Benner
International Journal for Numerical Methods in Engineering 121 (23) 5320 (2020)
https://doi.org/10.1002/nme.6462

An Artificial Compression Reduced Order Model

Victor DeCaria, Traian Iliescu, William Layton, Michael McLaughlin and Michael Schneier
SIAM Journal on Numerical Analysis 58 (1) 565 (2020)
https://doi.org/10.1137/19M1246444

Error estimation in reduced basis method for systems with time-varying and nonlinear boundary conditions

M.H. Abbasi, L. Iapichino, B. Besselink, W.H.A. Schilders and N. van de Wouw
Computer Methods in Applied Mechanics and Engineering 360 112688 (2020)
https://doi.org/10.1016/j.cma.2019.112688

Well‐scaled, a‐posteriori error estimation for model order reduction of large second‐order mechanical systems

Dennis Grunert, Jörg Fehr and Bernard Haasdonk
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 100 (8) (2020)
https://doi.org/10.1002/zamm.201900186

Parametrized reduced order modeling for cracked solids

Konstantinos Agathos, Stéphane P. A. Bordas and Eleni Chatzi
International Journal for Numerical Methods in Engineering 121 (20) 4537 (2020)
https://doi.org/10.1002/nme.6447

Adaptive reduced order modeling for nonlinear dynamical systems through a new a posteriori error estimator: Application to uncertainty quantification

Md. Nurtaj Hossain and Debraj Ghosh
International Journal for Numerical Methods in Engineering 121 (15) 3417 (2020)
https://doi.org/10.1002/nme.6365

Nonintrusive proper generalised decomposition for parametrised incompressible flow problems in OpenFOAM

Vasileios Tsiolakis, Matteo Giacomini, Ruben Sevilla, Carsten Othmer and Antonio Huerta
Computer Physics Communications 249 107013 (2020)
https://doi.org/10.1016/j.cpc.2019.107013

Model Reduction for Transport-Dominated Problems via Online Adaptive Bases and Adaptive Sampling

Benjamin Peherstorfer
SIAM Journal on Scientific Computing 42 (5) A2803 (2020)
https://doi.org/10.1137/19M1257275

Data-driven reduced order modeling for time-dependent problems

Mengwu Guo and Jan S. Hesthaven
Computer Methods in Applied Mechanics and Engineering 345 75 (2019)
https://doi.org/10.1016/j.cma.2018.10.029

Progress in Industrial Mathematics at ECMI 2018

Markus Rein, Jan Mohring, Tobias Damm and Axel Klar
Mathematics in Industry, Progress in Industrial Mathematics at ECMI 2018 30 405 (2019)
https://doi.org/10.1007/978-3-030-27550-1_51

Model order reduction for parametrized nonlinear hyperbolic problems as an application to uncertainty quantification

R. Crisovan, D. Torlo, R. Abgrall and S. Tokareva
Journal of Computational and Applied Mathematics 348 466 (2019)
https://doi.org/10.1016/j.cam.2018.09.018

Randomized Residual-Based Error Estimators for Parametrized Equations

Kathrin Smetana, Olivier Zahm and Anthony T. Patera
SIAM Journal on Scientific Computing 41 (2) A900 (2019)
https://doi.org/10.1137/18M120364X

Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise

Yong Liu, Tianheng Chen, Yanlai Chen and Chi-Wang Shu
Journal of Scientific Computing 81 (3) 1210 (2019)
https://doi.org/10.1007/s10915-019-00976-5

Adaptive non-intrusive reduced order modeling for compressible flows

Jian Yu, Chao Yan, Zhenhua Jiang, Wu Yuan and Shusheng Chen
Journal of Computational Physics 397 108855 (2019)
https://doi.org/10.1016/j.jcp.2019.07.053

A Reduced Generalized Multiscale Basis Method for Parametrized Groundwater Flow Problems in Heterogeneous Porous Media

Xinguang He, Qiuqi Li and Lijian Jiang
Water Resources Research 55 (3) 2390 (2019)
https://doi.org/10.1029/2018WR023954

Failure Probability Estimation of Linear Time Varying Systems by Progressive Refinement of Reduced Order Models

Agnimitra Dasgupta and Debraj Ghosh
SIAM/ASA Journal on Uncertainty Quantification 7 (3) 1007 (2019)
https://doi.org/10.1137/18M1165840

Reduced Basis Methods for Fractional Laplace Equations via Extension

Harbir Antil, Yanlai Chen and Akil Narayan
SIAM Journal on Scientific Computing 41 (6) A3552 (2019)
https://doi.org/10.1137/18M1204802

Reduced Collocation Method for Time-Dependent Parametrized Partial Differential Equations

Rezvan Ghaffari and Farideh Ghoreishi
Bulletin of the Iranian Mathematical Society 45 (5) 1487 (2019)
https://doi.org/10.1007/s41980-019-00210-w

Reduced Basis Method Applied to Eigenvalue Problems from Convection

Francisco Pla and Henar Herrero
International Journal of Bifurcation and Chaos 29 (03) 1950028 (2019)
https://doi.org/10.1142/S0218127419500287

Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem

Qian Wang, Jan S. Hesthaven and Deep Ray
Journal of Computational Physics 384 289 (2019)
https://doi.org/10.1016/j.jcp.2019.01.031

Mesh-Based and Meshfree Reduced Order Phase-Field Models for Brittle Fracture: One Dimensional Problems

Ngoc-Hien Nguyen, Vinh Phu Nguyen, Jian-Ying Wu, Thi-Hong-Hieu Le and Yan Ding
Materials 12 (11) 1858 (2019)
https://doi.org/10.3390/ma12111858

A certified model reduction approach for robust parameter optimization with PDE constraints

Alessandro Alla, Michael Hinze, Philip Kolvenbach, Oliver Lass and Stefan Ulbrich
Advances in Computational Mathematics 45 (3) 1221 (2019)
https://doi.org/10.1007/s10444-018-9653-1

A New Error Estimator for Reduced-Order Modeling of Linear Parametric Systems

Lihong Feng and Peter Benner
IEEE Transactions on Microwave Theory and Techniques 67 (12) 4848 (2019)
https://doi.org/10.1109/TMTT.2019.2948858

A multiscale method for model order reduction in PDE parameter estimation

Samy Wu Fung and Lars Ruthotto
Journal of Computational and Applied Mathematics 350 19 (2019)
https://doi.org/10.1016/j.cam.2018.09.043

Recent Advances in Computational Engineering

Christopher Spannring, Sebastian Ullmann and Jens Lang
Lecture Notes in Computational Science and Engineering, Recent Advances in Computational Engineering 124 145 (2018)
https://doi.org/10.1007/978-3-319-93891-2_9

Multivariate predictions of local reduced‐order‐model errors and dimensions

Azam Moosavi, Răzvan Ştefănescu and Adrian Sandu
International Journal for Numerical Methods in Engineering 113 (3) 512 (2018)
https://doi.org/10.1002/nme.5624

Reduced basis approximation of large scale parametric algebraic Riccati equations

Andreas Schmidt and Bernard Haasdonk
ESAIM: Control, Optimisation and Calculus of Variations 24 (1) 129 (2018)
https://doi.org/10.1051/cocv/2017011

Parametric domain decomposition for accurate reduced order models: Applications of MP-LROM methodology

Razvan Stefanescu, Azam Moosavi and Adrian Sandu
Journal of Computational and Applied Mathematics 340 629 (2018)
https://doi.org/10.1016/j.cam.2017.11.018

Empirical Gramian-based spatial basis functions for model reduction of nonlinear distributed parameter systems

Mian Jiang, Jigang Wu, Wenan Zhang and Xuejun Li
Mathematical and Computer Modelling of Dynamical Systems 24 (3) 258 (2018)
https://doi.org/10.1080/13873954.2018.1446448

Reduced-Order Modeling (ROM) for Simulation and Optimization

Zeger Bontinck, Oliver Lass, Oliver Rain and Sebastian Schöps
Reduced-Order Modeling (ROM) for Simulation and Optimization 121 (2018)
https://doi.org/10.1007/978-3-319-75319-5_6

Multilevel Algorithm for Obtaining the Proper Orthogonal Decomposition

Fariduddin Behzad, Brian T. Helenbrook and Goodarz Ahmadi
AIAA Journal 1 (2018)
https://doi.org/10.2514/1.J056807

A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and Objective Reduction

Sebastian Peitz and Michael Dellnitz
Mathematical and Computational Applications 23 (2) 30 (2018)
https://doi.org/10.3390/mca23020030

Reduced Numerical Approximation of Reduced Fluid-Structure Interaction Problems With Applications in Hemodynamics

Claudia M. Colciago and Simone Deparis
Frontiers in Applied Mathematics and Statistics 4 (2018)
https://doi.org/10.3389/fams.2018.00018

Model reduction using L1‐norm minimization as an application to nonlinear hyperbolic problems

R. Abgrall and R. Crisovan
International Journal for Numerical Methods in Fluids 87 (12) 628 (2018)
https://doi.org/10.1002/fld.4507

A Flow feature detection framework for large-scale computational data based on incremental proper orthogonal decomposition and data mining

Eric D. Robertson, Yi Wang, Kapil Pant, Matthew J. Grismer and José A. Camberos
International Journal of Computational Fluid Dynamics 32 (6-7) 261 (2018)
https://doi.org/10.1080/10618562.2018.1508657

Reduced order modeling of random linear dynamical systems based on a new a posteriori error bound

Md. Nurtaj Hossain and Debraj Ghosh
International Journal for Numerical Methods in Engineering 116 (12-13) 741 (2018)
https://doi.org/10.1002/nme.5942

Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization

Benjamin Peherstorfer, Karen Willcox and Max Gunzburger
SIAM Review 60 (3) 550 (2018)
https://doi.org/10.1137/16M1082469

Greedy Nonintrusive Reduced Order Model for Fluid Dynamics

Wang Chen, Jan S. Hesthaven, Bai Junqiang, et al.
AIAA Journal 56 (12) 4927 (2018)
https://doi.org/10.2514/1.J056161

Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier–Stokes equations

Giovanni Stabile and Gianluigi Rozza
Computers & Fluids 173 273 (2018)
https://doi.org/10.1016/j.compfluid.2018.01.035

A stabilized POD model for turbulent flows over a range of Reynolds numbers: Optimal parameter sampling and constrained projection

Lambert Fick, Yvon Maday, Anthony T. Patera and Tommaso Taddei
Journal of Computational Physics 371 214 (2018)
https://doi.org/10.1016/j.jcp.2018.05.027

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

Sébastien Boyaval, Guillaume Enchéry, Riad Sanchez and Quang Huy Tran
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems 200 477 (2017)
https://doi.org/10.1007/978-3-319-57394-6_50

Limited‐memory adaptive snapshot selection for proper orthogonal decomposition

Geoffrey M. Oxberry, Tanya Kostova‐Vassilevska, William Arrighi and Kyle Chand
International Journal for Numerical Methods in Engineering 109 (2) 198 (2017)
https://doi.org/10.1002/nme.5283

Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models

Immanuel Martini, Bernard Haasdonk and Gianluigi Rozza
Journal of Scientific Computing (2017)
https://doi.org/10.1007/s10915-017-0430-y

Solving Parameter-Dependent Lyapunov Equations Using the Reduced Basis Method with Application to Parametric Model Order Reduction

Nguyen Thanh Son and Tatjana Stykel
SIAM Journal on Matrix Analysis and Applications 38 (2) 478 (2017)
https://doi.org/10.1137/15M1027097

Computing Reduced Order Models via Inner-Outer Krylov Recycling in Diffuse Optical Tomography

Meghan O'Connell, Misha E. Kilmer, Eric de Sturler and Serkan Gugercin
SIAM Journal on Scientific Computing 39 (2) B272 (2017)
https://doi.org/10.1137/16M1062880

Reduced Basis Methods for Uncertainty Quantification

Peng Chen, Alfio Quarteroni and Gianluigi Rozza
SIAM/ASA Journal on Uncertainty Quantification 5 (1) 813 (2017)
https://doi.org/10.1137/151004550

Dynamical Model Reduction Method for Solving Parameter-Dependent Dynamical Systems

Marie Billaud-Friess and Anthony Nouy
SIAM Journal on Scientific Computing 39 (4) A1766 (2017)
https://doi.org/10.1137/16M1071493

Interpolation of Functions with Parameter Dependent Jumps by Transformed Snapshots

G. Welper
SIAM Journal on Scientific Computing 39 (4) A1225 (2017)
https://doi.org/10.1137/16M1059904

Data-Driven Reduced Model Construction with Time-Domain Loewner Models

Benjamin Peherstorfer, Serkan Gugercin and Karen Willcox
SIAM Journal on Scientific Computing 39 (5) A2152 (2017)
https://doi.org/10.1137/16M1094750

Accelerating optimization and uncertainty quantification of nonlinear SMB chromatography using reduced-order models

Yongjin Zhang, Lihong Feng, Andreas Seidel-Morgenstern and Peter Benner
Computers & Chemical Engineering 96 237 (2017)
https://doi.org/10.1016/j.compchemeng.2016.09.017

The rocky road to extended simulation frameworks covering uncertainty, inversion, optimization and control

Daniel Wirtz and Wolfgang Nowak
Environmental Modelling & Software 93 180 (2017)
https://doi.org/10.1016/j.envsoft.2016.10.003

On the Application of Reduced Basis Methods to Bifurcation Problems in Incompressible Fluid Dynamics

Giuseppe Pitton and Gianluigi Rozza
Journal of Scientific Computing (2017)
https://doi.org/10.1007/s10915-017-0419-6

A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods

Alberto Sartori, Antonio Cammi, Lelio Luzzi and Gianluigi Rozza
Journal of Nuclear Engineering and Radiation Science 2 (2) 021019 (2016)
https://doi.org/10.1115/1.4031945

Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures

Kathrin Smetana and Anthony T. Patera
SIAM Journal on Scientific Computing 38 (5) A3318 (2016)
https://doi.org/10.1137/15M1009603

POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations

Stefano Lorenzi, Antonio Cammi, Lelio Luzzi and Gianluigi Rozza
Computer Methods in Applied Mechanics and Engineering 311 151 (2016)
https://doi.org/10.1016/j.cma.2016.08.006

Reduced Basis Approaches in Time-Dependent Non-Coercive Settings for Modelling the Movement of Nuclear Reactor Control Rods

Alberto Sartori, Antonio Cammi, Lelio Luzzi and Gianluigi Rozza
Communications in Computational Physics 20 (1) 23 (2016)
https://doi.org/10.4208/cicp.120914.021115a

A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel

Alberto Sartori, Antonio Cammi, Lelio Luzzi and Gianluigi Rozza
Annals of Nuclear Energy 87 198 (2016)
https://doi.org/10.1016/j.anucene.2015.09.002

Isogeometric analysis-based reduced order modelling for incompressible linear viscous flows in parametrized shapes

Filippo Salmoiraghi, Francesco Ballarin, Luca Heltai and Gianluigi Rozza
Advanced Modeling and Simulation in Engineering Sciences 3 (1) (2016)
https://doi.org/10.1186/s40323-016-0076-6

A-posteriori error analysis for lithium-ion concentrations in batteries utilizing the reduced-basis method

L. Iapichino, S. Volkwein and A. Wesche
Mathematical and Computer Modelling of Dynamical Systems 22 (4) 362 (2016)
https://doi.org/10.1080/13873954.2016.1198387

An empirical interpolation approach to reduced basis approximations for variational inequalities

E. Bader, Z. Zhang and K. Veroy
Mathematical and Computer Modelling of Dynamical Systems 22 (4) 345 (2016)
https://doi.org/10.1080/13873954.2016.1198388

An hp -proper orthogonal decomposition–moving least squares approach for molecular dynamics simulation

K.C. Hoang, Y. Fu and J.H. Song
Computer Methods in Applied Mechanics and Engineering 298 548 (2016)
https://doi.org/10.1016/j.cma.2015.10.003

Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

Qifeng Liao and Guang Lin
Journal of Computational Physics 317 148 (2016)
https://doi.org/10.1016/j.jcp.2016.04.029

A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains

Yanlai Chen, Sigal Gottlieb, Alfa Heryudono and Akil Narayan
Journal of Scientific Computing 66 (1) 67 (2016)
https://doi.org/10.1007/s10915-015-0013-8

Reduced‐order modelling for linear heat conduction with parametrised moving heat sources

Benjamin Brands, Julia Mergheim and Paul Steinmann
GAMM-Mitteilungen 39 (2) 170 (2016)
https://doi.org/10.1002/gamm.201610011

Numerical Mathematics and Advanced Applications ENUMATH 2015

Mario Ohlberger, Stephan Rave and Felix Schindler
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications ENUMATH 2015 112 317 (2016)
https://doi.org/10.1007/978-3-319-39929-4_31

Numerical Mathematics and Advanced Applications ENUMATH 2015

Laura Iapichino, Stefan Trenz and Stefan Volkwein
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications ENUMATH 2015 112 389 (2016)
https://doi.org/10.1007/978-3-319-39929-4_37

A fast, certified and “tuning free” two-field reduced basis method for the metamodelling of affinely-parametrised elasticity problems

K.C. Hoang, P. Kerfriden and S.P.A. Bordas
Computer Methods in Applied Mechanics and Engineering 298 121 (2016)
https://doi.org/10.1016/j.cma.2015.08.016

Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD–Galerkin method and a vascular shape parametrization

Francesco Ballarin, Elena Faggiano, Sonia Ippolito, et al.
Journal of Computational Physics 315 609 (2016)
https://doi.org/10.1016/j.jcp.2016.03.065

A reduced basis Kalman filter for parametrized partial differential equations

Markus Dihlmann and Bernard Haasdonk
ESAIM: Control, Optimisation and Calculus of Variations 22 (3) 625 (2016)
https://doi.org/10.1051/cocv/2015019

Reduced basis techniques for nonlinear conservation laws

T. Taddei, S. Perotto and A. Quarteroni
ESAIM: Mathematical Modelling and Numerical Analysis 49 (3) 787 (2015)
https://doi.org/10.1051/m2an/2014054

Adaptive POD‐based low‐dimensional modeling supported by residual estimates

M.‐L. Rapún, F. Terragni and J. M. Vega
International Journal for Numerical Methods in Engineering 104 (9) 844 (2015)
https://doi.org/10.1002/nme.4947

Reduced Basis Methods for Pricing Options with the Black--Scholes and Heston Models

O. Burkovska, B. Haasdonk, J. Salomon and B. Wohlmuth
SIAM Journal on Financial Mathematics 6 (1) 685 (2015)
https://doi.org/10.1137/140981216

Adaptive training of local reduced bases for unsteady incompressible Navier–Stokes flows

Yuqi Wu and Ulrich Hetmaniuk
International Journal for Numerical Methods in Engineering 103 (3) 183 (2015)
https://doi.org/10.1002/nme.4883

The localized reduced basis multiscale method for two‐phase flows in porous media

S. Kaulmann, B. Flemisch, B. Haasdonk, K. ‐A. Lie and M. Ohlberger
International Journal for Numerical Methods in Engineering 102 (5) 1018 (2015)
https://doi.org/10.1002/nme.4773

Adaptive h‐refinement for reduced‐order models

Kevin Carlberg
International Journal for Numerical Methods in Engineering 102 (5) 1192 (2015)
https://doi.org/10.1002/nme.4800

An Efficient Output Error Bound for Model Order Reduction of Parametrized Evolution Equations

Yongjin Zhang, Lihong Feng, Suzhou Li and Peter Benner
IFAC-PapersOnLine 48 (1) 9 (2015)
https://doi.org/10.1016/j.ifacol.2015.05.096

An efficient goal‐oriented sampling strategy using reduced basis method for parametrized elastodynamic problems

K. C. Hoang, P. Kerfriden, B. C. Khoo and S. P. A. Bordas
Numerical Methods for Partial Differential Equations 31 (2) 575 (2015)
https://doi.org/10.1002/num.21932

Data-driven combined state and parameter reduction for inverse problems

Christian Himpe and Mario Ohlberger
Advances in Computational Mathematics 41 (5) 1343 (2015)
https://doi.org/10.1007/s10444-015-9420-5

A posteriori error estimators for linear reduced‐order models using Krylov‐based integrators

D. Amsallem and U. Hetmaniuk
International Journal for Numerical Methods in Engineering 102 (5) 1238 (2015)
https://doi.org/10.1002/nme.4753