Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Coercive second-kind boundary integral equations for the Laplace Dirichlet problem on Lipschitz domains

S. N. Chandler-Wilde and E. A. Spence
Numerische Mathematik 156 (4) 1325 (2024)
https://doi.org/10.1007/s00211-024-01424-9

CVEM-BEM Coupling with Decoupled Orders for 2D Exterior Poisson Problems

Luca Desiderio, Silvia Falletta, Matteo Ferrari and Letizia Scuderi
Journal of Scientific Computing 92 (3) (2022)
https://doi.org/10.1007/s10915-022-01951-3

Numerical Mathematics and Advanced Applications ENUMATH 2017

Christoph Erath and Robert Schorr
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications ENUMATH 2017 126 993 (2019)
https://doi.org/10.1007/978-3-319-96415-7_94

Meshless analysis and applications of a symmetric improved Galerkin boundary node method using the improved moving least-square approximation

Xiaolin Li and Shougui Zhang
Applied Mathematical Modelling 40 (4) 2875 (2016)
https://doi.org/10.1016/j.apm.2015.09.080

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 271 (2014)
https://doi.org/10.1007/978-94-007-0202-8_12

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 197 (2014)
https://doi.org/10.1007/978-94-007-0202-8_8

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 129 (2014)
https://doi.org/10.1007/978-94-007-0202-8_6

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 153 (2014)
https://doi.org/10.1007/978-94-007-0202-8_7

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 3 (2014)
https://doi.org/10.1007/978-94-007-0202-8_1

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 221 (2014)
https://doi.org/10.1007/978-94-007-0202-8_9

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 55 (2014)
https://doi.org/10.1007/978-94-007-0202-8_3

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 39 (2014)
https://doi.org/10.1007/978-94-007-0202-8_2

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 103 (2014)
https://doi.org/10.1007/978-94-007-0202-8_5

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 243 (2014)
https://doi.org/10.1007/978-94-007-0202-8_10

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 79 (2014)
https://doi.org/10.1007/978-94-007-0202-8_4

Mathematical Models for Eddy Currents and Magnetostatics

Rachid Touzani and Jacques Rappaz
Scientific Computation, Mathematical Models for Eddy Currents and Magnetostatics 255 (2014)
https://doi.org/10.1007/978-94-007-0202-8_11

Behaviour of the Landau–Lifschitz equation in a ferromagnetic wire

David Sanchez
Mathematical Methods in the Applied Sciences 32 (2) 167 (2009)
https://doi.org/10.1002/mma.1030

WeightedLptheory of the Stokes and the bilaplacian operators in the half-space

Tahar Zamène Boulmezaoud and Mohamed Medjden
Journal of Mathematical Analysis and Applications 342 (1) 220 (2008)
https://doi.org/10.1016/j.jmaa.2007.11.032

Inverted finite elements: a new method for solving elliptic problems in unbounded domains

Tahar Zamène Boulmezaoud
ESAIM: Mathematical Modelling and Numerical Analysis 39 (1) 109 (2005)
https://doi.org/10.1051/m2an:2005001

On the Schwarz algorithms for the Elliptic Exterior Boundary Value Problems

Faker Ben Belgacem, Michel Fournié, Nabil Gmati and Faten Jelassi
ESAIM: Mathematical Modelling and Numerical Analysis 39 (4) 693 (2005)
https://doi.org/10.1051/m2an:2005030

Numerical analysis of a non‐singular boundary integral method: Part II: The general case

P. Dreyfuss and J. Rappaz
Mathematical Methods in the Applied Sciences 25 (7) 557 (2002)
https://doi.org/10.1002/mma.302

Numerical analysis of a non‐singular boundary integral method: Part I. The circular case

P. Dreyfuss and J. Rappaz
Mathematical Methods in the Applied Sciences 24 (11) 847 (2001)
https://doi.org/10.1002/mma.245

On the coupling of boundary integral and finite element methods with nonlinear transmission conditions

Gabriel R. Barrenechea and Gabriel N. Gatica
Applicable Analysis 62 (1-2) 181 (1996)
https://doi.org/10.1080/00036819608840477

A Boundary Element Method for a Nonlinear Boundary Value Problem in Steady-State Heat Transfer

Houde Han
Journal of Integral Equations and Applications 7 (1) (1995)
https://doi.org/10.1216/jiea/1181075848

Étude numérique des pôles de résonance associés à la diffraction d'ondes acoustiques et élastiques par un obstacle en dimension 2

Olivier Poisson
ESAIM: Mathematical Modelling and Numerical Analysis 29 (7) 819 (1995)
https://doi.org/10.1051/m2an/1995290708191

Consistency estimates for a double-layer potential and application to the numerical analysis of the boundary-element approximation of acoustic scattering by a penetrable object

A. Bendali and M. Souilah
Mathematics of Computation 62 (205) 65 (1994)
https://doi.org/10.1090/S0025-5718-1994-1201067-9

A boundary element method for steady-state two-dimensional viscous fluid flows and its asymptotic error estimates

Hong Wang
Engineering Analysis with Boundary Elements 12 (3) 195 (1993)
https://doi.org/10.1016/0955-7997(93)90015-D

On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2

Gabriel N. Gatica and George C. Hsiao
Numerische Mathematik 61 (1) 171 (1992)
https://doi.org/10.1007/BF01385504

THE COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS

Yinnian He and Kaitai Li
Acta Mathematica Scientia 11 (2) 190 (1991)
https://doi.org/10.1016/S0252-9602(18)30232-7

On the Coupling Boundary Integral and Finite Element Methods for the Exterior Stokes Problem in 3-D

Georges H. Guirguis
SIAM Journal on Numerical Analysis 24 (2) 310 (1987)
https://doi.org/10.1137/0724023

Bem and its convergence for Stationary Stokes problem in three dimensions

Hong Wang
Acta Mathematicae Applicatae Sinica 3 (4) 318 (1987)
https://doi.org/10.1007/BF02008370

On the approximation of the exterior Stokes problem in three dimensions

Georges H. Guirguis and Max D. Gunzburger
ESAIM: Mathematical Modelling and Numerical Analysis 21 (3) 445 (1987)
https://doi.org/10.1051/m2an/1987210304451

The coupling of boundary integral and finite element methods for the bidimensional exterior steady stokes problem

A. Sequeira and J.C. Nedelec
Mathematical Methods in the Applied Sciences 5 (1) 356 (1983)
https://doi.org/10.1002/mma.1670050124

Numerical Methods for the First Biharmonic Equation and for the Two-Dimensional Stokes Problem

R. Glowinski and O. Pironneau
SIAM Review 21 (2) 167 (1979)
https://doi.org/10.1137/1021028