The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Catherine Bolley , Michel Crouzeix
RAIRO. Anal. numér., 12 3 (1978) 237-245
Published online: 2017-02-01
This article has been cited by the following article(s):
67 articles
New limiter regions for multidimensional flows
James Woodfield, Hilary Weller and Colin J. Cotter Journal of Computational Physics 515 113286 (2024) https://doi.org/10.1016/j.jcp.2024.113286
On the non-global linear stability and spurious fixed points of MPRK schemes with negative RK parameters
Thomas Izgin, Stefan Kopecz, Andreas Meister and Amandine Schilling Numerical Algorithms 96 (3) 1221 (2024) https://doi.org/10.1007/s11075-024-01770-7
Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model
X. Liu, M. Zhang and Z.W. Yang Applied Numerical Mathematics 204 291 (2024) https://doi.org/10.1016/j.apnum.2024.06.016
James Woodfield, Hilary Weller and Colin J. Cotter (2023) https://doi.org/10.2139/ssrn.4668131
Framework for solving dynamics of Ca2+ ion concentrations in liver cells numerically: Analysis of a non‐negativity‐preserving non‐standard finite‐difference method
Benjamin Wacker Mathematical Methods in the Applied Sciences 46 (16) 16625 (2023) https://doi.org/10.1002/mma.9464
Error estimates for fully discrete BDF finite element approximations of the Allen–Cahn equation
Georgios Akrivis and Buyang Li IMA Journal of Numerical Analysis 42 (1) 363 (2022) https://doi.org/10.1093/imanum/draa065
Issues with positivity-preserving Patankar-type schemes
Davide Torlo, Philipp Öffner and Hendrik Ranocha Applied Numerical Mathematics 182 117 (2022) https://doi.org/10.1016/j.apnum.2022.07.014
On the Stability of Unconditionally Positive and Linear Invariants Preserving Time Integration Schemes
Thomas Izgin, Stefan Kopecz and Andreas Meister SIAM Journal on Numerical Analysis 60 (6) 3029 (2022) https://doi.org/10.1137/22M1480318
Maximum Principle Preserving Space and Time Flux Limiting for Diagonally Implicit Runge–Kutta Discretizations of Scalar Convection-diffusion Equations
Manuel Quezada de Luna and David I. Ketcheson Journal of Scientific Computing 92 (3) (2022) https://doi.org/10.1007/s10915-022-01922-8
Positivity-preserving adaptive Runge–Kutta
methods
Stephan Nüßlein, Hendrik Ranocha and David I. Ketcheson Communications in Applied Mathematics and Computational Science 16 (2) 155 (2021) https://doi.org/10.2140/camcos.2021.16.155
Computation of Optimal Linear Strong Stability Preserving Methods Via Adaptive Spectral Transformations of Poisson–Charlier Measures
Rachid Ait-Haddou Journal of Scientific Computing 88 (3) (2021) https://doi.org/10.1007/s10915-021-01582-0
Kernel density estimation with linked boundary conditions
Matthew J. Colbrook, Zdravko I. Botev, Karsten Kuritz and Shev MacNamara Studies in Applied Mathematics 145 (3) 357 (2020) https://doi.org/10.1111/sapm.12322
A comprehensive theory on generalized BBKS schemes
Andrés I. Ávila, Stefan Kopecz and Andreas Meister Applied Numerical Mathematics 157 19 (2020) https://doi.org/10.1016/j.apnum.2020.05.027
Applications of Magnus expansions and pseudospectra to Markov processes
A. ISERLES and S. MACNAMARA European Journal of Applied Mathematics 30 (2) 400 (2019) https://doi.org/10.1017/S0956792518000177
2017 MATRIX Annals
Colin Fox, Richard A. Norton, Malcolm E. K. Morrison and Timothy C. A. Molteno MATRIX Book Series, 2017 MATRIX Annals 2 13 (2019) https://doi.org/10.1007/978-3-030-04161-8_2
Invariance Preserving Discretization Methods of Dynamical Systems
Zoltán Horváth, Yunfei Song and Tamás Terlaky Vietnam Journal of Mathematics 46 (4) 803 (2018) https://doi.org/10.1007/s10013-018-0305-z
Positivity for Convective Semi-discretizations
Imre Fekete, David I. Ketcheson and Lajos Lóczi Journal of Scientific Computing 74 (1) 244 (2018) https://doi.org/10.1007/s10915-017-0432-9
Herman Deconinck and Mario Ricchiuto 1 (2017) https://doi.org/10.1002/9781119176817.ecm2054
Structure-preserving discretization of the chemical master equation
Ludwig Gauckler and Harry Yserentant BIT Numerical Mathematics 57 (3) 753 (2017) https://doi.org/10.1007/s10543-017-0651-3
Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models
J. Y. Tang and W. J. Riley Biogeosciences 13 (3) 723 (2016) https://doi.org/10.5194/bg-13-723-2016
J. Y. Tang and W. J. Riley (2015) https://doi.org/10.5194/bgd-12-13399-2015
Positive Second Order Finite Difference Methods on Fokker-Planck Equations with Dirac Initial Data
Fabien Le Floc'h SSRN Electronic Journal (2015) https://doi.org/10.2139/ssrn.2600500
Positive Second Order Finite Difference Methods on Fokker-Planck Equations with Dirac Initial Data - Application in Finance
Fabien Le Floc'h SSRN Electronic Journal (2015) https://doi.org/10.2139/ssrn.2605160
Rosenbrock-type methods with Inexact AMF for the time integration of advection–diffusion–reaction PDEs
S. González-Pinto, D. Hernández-Abreu and S. Pérez-Rodríguez Journal of Computational and Applied Mathematics 262 304 (2014) https://doi.org/10.1016/j.cam.2013.10.050
Rational functions with maximal radius of absolute monotonicity
Lajos Lóczi and David I. Ketcheson LMS Journal of Computation and Mathematics 17 (1) 159 (2014) https://doi.org/10.1112/S1461157013000326
Stepsize Restrictions for Boundedness and Monotonicity of Multistep Methods
W. Hundsdorfer, A. Mozartova and M. N. Spijker Journal of Scientific Computing 50 (2) 265 (2012) https://doi.org/10.1007/s10915-011-9487-1
Positivity preserving discretization of time dependent semiconductor drift–diffusion equations
Markus Brunk and Anne Kværnø Applied Numerical Mathematics 62 (10) 1289 (2012) https://doi.org/10.1016/j.apnum.2012.06.016
A second-order positivity preserving scheme for semilinear parabolic problems
Eskil Hansen, Felix Kramer and Alexander Ostermann Applied Numerical Mathematics 62 (10) 1428 (2012) https://doi.org/10.1016/j.apnum.2012.06.003
Positivity and Conservation Properties of Some Integration Schemes for Mass Action Kinetics
L. Formaggia and A. Scotti SIAM Journal on Numerical Analysis 49 (3) 1267 (2011) https://doi.org/10.1137/100789592
Positivity inheritance for linear problems
A.K. Baum and Volker Mehrmann PAMM 10 (1) 597 (2010) https://doi.org/10.1002/pamm.201010291
On a stochastic reaction–diffusion system modeling pattern formation on seashells
Jan Kelkel and Christina Surulescu Journal of Mathematical Biology 60 (6) 765 (2010) https://doi.org/10.1007/s00285-009-0284-5
Combination of nonstandard schemes and Richardson’s extrapolation to improve the numerical solution of population models
Gilberto González-Parra, Abraham J. Arenas and Benito M. Chen-Charpentier Mathematical and Computer Modelling 52 (7-8) 1030 (2010) https://doi.org/10.1016/j.mcm.2010.03.015
Stabilized residual distribution for shallow water simulations
Mario Ricchiuto and Andreas Bollermann Journal of Computational Physics 228 (4) 1071 (2009) https://doi.org/10.1016/j.jcp.2008.10.020
Advanced Computational Methods in Science and Engineering
S. van Veldhuizen, C. Vuik and C. R. Kleijn Lecture Notes in Computational Science and Engineering, Advanced Computational Methods in Science and Engineering 71 47 (2009) https://doi.org/10.1007/978-3-642-03344-5_3
Comparison of ODE methods for laminar reacting gas flow simulations
S. van Veldhuizen, C. Vuik and C.R. Kleijn Numerical Methods for Partial Differential Equations 24 (3) 1037 (2008) https://doi.org/10.1002/num.20305
A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems
Jorn Bruggeman, Hans Burchard, Bob W. Kooi and Ben Sommeijer Applied Numerical Mathematics 57 (1) 36 (2007) https://doi.org/10.1016/j.apnum.2005.12.001
Positivity of exponential Runge–Kutta methods
Alexander Ostermann and Marnix van Daele BIT Numerical Mathematics 47 (2) 419 (2007) https://doi.org/10.1007/s10543-007-0124-1
Runge–Kutta convolution quadrature methods for well-posed equations with memory
M. P. Calvo, E. Cuesta and C. Palencia Numerische Mathematik 107 (4) 589 (2007) https://doi.org/10.1007/s00211-007-0107-9
Numerical Mathematics and Advanced Applications
Alexander Ostermann and Mechthild Thalhammer Numerical Mathematics and Advanced Applications 564 (2006) https://doi.org/10.1007/978-3-540-34288-5_53
BACKWARD EULER METHOD AS A POSITIVITY PRESERVING METHOD FOR ABSTRACT INTEGRAL EQUATIONS OF CONVOLUTION TYPE
E. Cuesta, M.P. Calvo and C. Palencia IFAC Proceedings Volumes 39 (11) 517 (2006) https://doi.org/10.3182/20060719-3-PT-4902.00086
On positivity, shape, and norm-bound preservation of time-stepping methods for semigroups
Mihály Kovács Journal of Mathematical Analysis and Applications 304 (1) 115 (2005) https://doi.org/10.1016/j.jmaa.2004.09.069
On the positivity step size threshold of Runge–Kutta methods
Zoltán Horváth Applied Numerical Mathematics 53 (2-4) 341 (2005) https://doi.org/10.1016/j.apnum.2004.08.026
Herman Deconinck and Mario Ricchiuto (2004) https://doi.org/10.1002/0470091355.ecm054
On the positivity of matrix-vector products
Zoltán Horváth Linear Algebra and its Applications 393 253 (2004) https://doi.org/10.1016/j.laa.2004.03.012
Implicit–explicit time stepping with spatial discontinuous finite elements
Willem Hundsdorfer and Jérôme Jaffré Applied Numerical Mathematics 45 (2-3) 231 (2003) https://doi.org/10.1016/S0168-9274(02)00192-7
The positivity of low-order explicit Runge-Kutta schemes applied in splitting methods
A Gerisch and R Weiner Computers & Mathematics with Applications 45 (1-3) 53 (2003) https://doi.org/10.1016/S0898-1221(03)80007-X
Numerical simulation of a point-source initiated flame ball with heat losses
Jacques Audounet, Jean-Michel Roquejoffre and Hélène Rouzaud ESAIM: Mathematical Modelling and Numerical Analysis 36 (2) 273 (2002) https://doi.org/10.1051/m2an:2002017
A positive splitting method for mixed hyperbolic-parabolic systems
Alf Gerisch, David F. Griffiths, R�diger Weiner and Mark A. J. Chaplain Numerical Methods for Partial Differential Equations 17 (2) 152 (2001) https://doi.org/10.1002/1098-2426(200103)17:2<152::AID-NUM5>3.0.CO;2-A
Convergence and nonnegativity of numerical methods for an integrodifferential equation describing batch grinding
G. Stoyan, C. Mihálykó and Z. Ulbert Computers & Mathematics with Applications 35 (12) 69 (1998) https://doi.org/10.1016/S0898-1221(98)00097-2
Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
Zoltán Horváth Applied Numerical Mathematics 28 (2-4) 309 (1998) https://doi.org/10.1016/S0168-9274(98)00050-6
Consistency and stability for some nonnegativity-conserving methods
Zoltán Horváth Applied Numerical Mathematics 13 (5) 371 (1993) https://doi.org/10.1016/0168-9274(93)90095-9
Contractivity of Runge-Kutta methods
J. F. B. M. Kraaijevanger BIT 31 (3) 482 (1991) https://doi.org/10.1007/BF01933264
Contractivity-preserving implicit linear multistep methods
H. W. J. Lenferink Mathematics of Computation 56 (193) 177 (1991) https://doi.org/10.1090/S0025-5718-1991-1052098-0
Numerical analysis of three‐time‐level finite difference schemes for unsteady diffusion–convection problems
Alain Rigal International Journal for Numerical Methods in Engineering 30 (2) 307 (1990) https://doi.org/10.1002/nme.1620300207
Stability radius of polynomials occurring in the numerical solution of initial value problems
Roeland P. van der Marel BIT Numerical Mathematics 30 (3) 516 (1990) https://doi.org/10.1007/BF01931665
Numerical analysis of two‐level finite difference schemes for unsteady diffusion–convection problems
Alain Rigal International Journal for Numerical Methods in Engineering 28 (5) 1001 (1989) https://doi.org/10.1002/nme.1620280503
Contractivity preserving explicit linear multistep methods
H. W. J. Lenferink Numerische Mathematik 55 (2) 213 (1989) https://doi.org/10.1007/BF01406515
Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations
J.F.B.M. Kraaijevanger, H.W.J. Lenferink and M.N. Spijker Journal of Computational and Applied Mathematics 20 67 (1987) https://doi.org/10.1016/0377-0427(87)90126-9
Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems
J. F. B. M. Kraaijevanger Numerische Mathematik 48 (3) 303 (1986) https://doi.org/10.1007/BF01389477
Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems
J. A. van de Griend and J. F. B. M. Kraaijevanger Numerische Mathematik 49 (4) 413 (1986) https://doi.org/10.1007/BF01389539
Order Stars, Approximations and Finite Differences. III Finite Differences for $u_t = \omega u_{xx} $
A. Iserles SIAM Journal on Mathematical Analysis 16 (5) 1020 (1985) https://doi.org/10.1137/0516076
On the relation between stability and contractivity
M. N. Spijker BIT 24 (4) 656 (1984) https://doi.org/10.1007/BF01934922
Instability in Runge-Kutta schemes for simulation of oil recovery
P. H. Sammon and P. Forsyth BIT Numerical Mathematics 24 (3) 373 (1984) https://doi.org/10.1007/BF02136036
Invariant Regions and asymptotic behaviour for the numerical solution of reaction-diffusion systems by a class of alternating direction methods
C. Mastroserio and M. Montrone Calcolo 21 (3) 269 (1984) https://doi.org/10.1007/BF02576537
Contractivity in the numerical solution of initial value problems
M. N. Spijker Numerische Mathematik 42 (3) 271 (1983) https://doi.org/10.1007/BF01389573
The use of positive matrices for the analysis of the large time behavior of the numerical solution of reaction-diffusion systems
Luciano Galeone Mathematics of Computation 41 (164) 461 (1983) https://doi.org/10.1090/S0025-5718-1983-0717696-5
A discrete method for the identification of parameters of a deterministic epidemic model
Giovanni di Lena and Gabriella Serio Mathematical Biosciences 60 (2) 161 (1982) https://doi.org/10.1016/0025-5564(82)90127-4