Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Partitioned analysis of acoustic fluid–solid-saturated porous medium interaction problems by a generalized saturated porous medium model and localized Lagrange multipliers

Jiao Zhang, Shaolin Chen and Hongquan Liu
Computers and Geotechnics 170 106271 (2024)
https://doi.org/10.1016/j.compgeo.2024.106271

Analysis of an Embedded-Hybridizable Discontinuous Galerkin Method for Biot’s Consolidation Model

Aycil Cesmelioglu, Jeonghun J. Lee and Sander Rhebergen
Journal of Scientific Computing 97 (3) (2023)
https://doi.org/10.1007/s10915-023-02373-5

Existence and uniqueness of solutions of thermo-poroelasticity

Juan E. Santos, José M. Carcione and Jing Ba
Journal of Mathematical Analysis and Applications 499 (1) 124907 (2021)
https://doi.org/10.1016/j.jmaa.2020.124907

Hölder stability in determining elastic coefficients of Biot's system in poroelastic media

Wensheng Zhang and Zifan Jiang
Journal of Physics Communications 4 (8) 085007 (2020)
https://doi.org/10.1088/2399-6528/ab9ea2

An inverse problem for an electroseismic model describing the coupling phenomenon of electromagnetic and seismic waves

Eric Bonnetier, Faouzi Triki and Qi Xue
Inverse Problems 35 (4) 045002 (2019)
https://doi.org/10.1088/1361-6420/ab01aa

General coupling of porous flows and hyperelastic formulations—From thermodynamics principles to energy balance and compatible time schemes

D. Chapelle and P. Moireau
European Journal of Mechanics - B/Fluids 46 82 (2014)
https://doi.org/10.1016/j.euromechflu.2014.02.009

Carleman estimate and inverse source problem for Biot’s equations describing wave propagation in porous media

Mourad Bellassoued and Masahiro Yamamoto
Inverse Problems 29 (11) 115002 (2013)
https://doi.org/10.1088/0266-5611/29/11/115002

Numerical electroseismic modeling: A finite element approach

Juan E. Santos, Fabio I. Zyserman and Patricia M. Gauzellino
Applied Mathematics and Computation 218 (11) 6351 (2012)
https://doi.org/10.1016/j.amc.2011.12.003

Computational poroelasticity — A review

José M. Carcione, Christina Morency and Juan E. Santos
GEOPHYSICS 75 (5) 75A229 (2010)
https://doi.org/10.1190/1.3474602

A model for wave propagation in a composite solid matrix saturated by a single-phase fluid

Juan E. Santos, Claudia L. Ravazzoli and José M. Carcione
The Journal of the Acoustical Society of America 115 (6) 2749 (2004)
https://doi.org/10.1121/1.1710500

On the solution of an inverse scattering problem in seismic while-drilling technology

Juan E. Santos
Computer Methods in Applied Mechanics and Engineering 191 (21-22) 2403 (2002)
https://doi.org/10.1016/S0045-7825(01)00418-2

Finite Element Methods for a Composite Model in Elastodynamics

Juan Enrique Santos, Jim Douglas, Jr. and Alberto Pedro Calderon
SIAM Journal on Numerical Analysis 25 (3) 513 (1988)
https://doi.org/10.1137/0725033

Elastic wave propagation in fluid-saturated porous media. Part II. The Galerkin procedures

Juan Enrique Santos and Ernesto Jorge Oreña
ESAIM: Mathematical Modelling and Numerical Analysis 20 (1) 129 (1986)
https://doi.org/10.1051/m2an/1986200101291