Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Monolithic and local time-stepping decoupled algorithms for transport problems in fractured porous media

Yanzhao Cao, Thi-Thao-Phuong Hoang and Phuoc-Toan Huynh
IMA Journal of Numerical Analysis (2024)
https://doi.org/10.1093/imanum/drae005

A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport

Jing Zhang and Hongxing Rui
Journal of Computational and Applied Mathematics 441 115672 (2024)
https://doi.org/10.1016/j.cam.2023.115672

A parameter-free mixed formulation for the Stokes equations and linear elasticity with strongly symmetric stress

Lina Zhao
Computers & Mathematics with Applications 155 35 (2024)
https://doi.org/10.1016/j.camwa.2023.11.040

A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem

Sergio Caucao, Eligio Colmenares, Gabriel N. Gatica and Cristian Inzunza
Computers & Mathematics with Applications 145 65 (2023)
https://doi.org/10.1016/j.camwa.2023.06.006

Optimal error estimates of a lowest-order Galerkin-mixed FEM for the thermoviscoelastic Joule heating equations

Yun-Bo Yang and Yao-Lin Jiang
Applied Numerical Mathematics 183 86 (2023)
https://doi.org/10.1016/j.apnum.2022.08.017

Variational discretization of one-dimensional elliptic optimal control problems with BV functions based on the mixed formulation

Evelyn Herberg and Michael Hinze
Mathematical Control and Related Fields 13 (2) 695 (2023)
https://doi.org/10.3934/mcrf.2022013

Optimal Analysis of Non-Uniform Galerkin-Mixed Finite Element Approximations to the Ginzburg–Landau Equations in Superconductivity

Huadong Gao and Weiwei Sun
SIAM Journal on Numerical Analysis 61 (2) 929 (2023)
https://doi.org/10.1137/22M1483670

An Lp- primal–dual weak Galerkin method for convection–diffusion equations

Waixiang Cao, Chunmei Wang and Junping Wang
Journal of Computational and Applied Mathematics 419 114698 (2023)
https://doi.org/10.1016/j.cam.2022.114698

A Strongly Mass Conservative Method for the Coupled Brinkman-Darcy Flow and Transport

Lina Zhao and Shuyu Sun
SIAM Journal on Scientific Computing 45 (2) B166 (2023)
https://doi.org/10.1137/21M145700X

A Pseudostress-Based Mixed-Primal Finite Element Method for Stress-Assisted Diffusion Problems in Banach Spaces

Gabriel N. Gatica, Cristian Inzunza and Filánder A. Sequeira
Journal of Scientific Computing 92 (3) (2022)
https://doi.org/10.1007/s10915-022-01959-9

An Lp spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations

Gabriel N Gatica, Salim Meddahi and Ricardo Ruiz-Baier
IMA Journal of Numerical Analysis 42 (4) 3154 (2022)
https://doi.org/10.1093/imanum/drab063

A characteristic expanded mixed finite element numerical method for incompressible miscible displacement problem involving dispersion term

Hanzhang Hu
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 102 (9) (2022)
https://doi.org/10.1002/zamm.202100553

A Robin-Type Domain Decomposition Method for a Novel Mixed-Type DG Method for the Coupled Stokes--Darcy Problem

Lina Zhao
SIAM Journal on Scientific Computing 44 (5) B1221 (2022)
https://doi.org/10.1137/21M1449750

Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations

Mingyan He and Pengtao Sun
Journal of Scientific Computing 87 (3) (2021)
https://doi.org/10.1007/s10915-021-01478-z

Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations

Huadong Gao, Weiwei Sun and Chengda Wu
IMA Journal of Numerical Analysis 41 (4) 3175 (2021)
https://doi.org/10.1093/imanum/draa063

$L^\infty$ Norm Error Estimates for HDG Methods Applied to the Poisson Equation with an Application to the Dirichlet Boundary Control Problem

Gang Chen, Peter B. Monk and Yangwen Zhang
SIAM Journal on Numerical Analysis 59 (2) 720 (2021)
https://doi.org/10.1137/20M1338551

Analysis of Lowest-Order Characteristics-Mixed FEMs for Incompressible Miscible Flow in Porous Media

Weiwei Sun
SIAM Journal on Numerical Analysis 59 (4) 1875 (2021)
https://doi.org/10.1137/20M1318766

New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media

Weiwei Sun and Chengda Wu
Mathematics of Computation 90 (327) 81 (2020)
https://doi.org/10.1090/mcom/3561

Optimal error analysis of Crank–Nicolson lowest‐order Galerkin‐mixed finite element method for incompressible miscible flow in porous media

Huadong Gao and Weiwei Sun
Numerical Methods for Partial Differential Equations 36 (6) 1773 (2020)
https://doi.org/10.1002/num.22503

A two-grid Eulerian–Lagrangian localized adjoint method to miscible displacement problems with dispersion term

Yang Wang, Yanping Chen and Yunqing Huang
Computers & Mathematics with Applications 80 (4) 54 (2020)
https://doi.org/10.1016/j.camwa.2020.04.005

A nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poroelastic media

Ilona Ambartsumyan, Vincent J. Ervin, Truong Nguyen and Ivan Yotov
ESAIM: Mathematical Modelling and Numerical Analysis 53 (6) 1915 (2019)
https://doi.org/10.1051/m2an/2019061

An expanded mixed finite element method for two-dimensional Sobolev equations

Na Li, Ping Lin and Fuzheng Gao
Journal of Computational and Applied Mathematics 348 342 (2019)
https://doi.org/10.1016/j.cam.2018.08.041

Advances in Internet, Data & Web Technologies

Yanping Li and Qingli Zhao
Lecture Notes on Data Engineering and Communications Technologies, Advances in Internet, Data & Web Technologies 17 818 (2018)
https://doi.org/10.1007/978-3-319-75928-9_74

A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations

Huadong Gao and Pengtao Sun
Journal of Scientific Computing 77 (2) 793 (2018)
https://doi.org/10.1007/s10915-018-0727-5

OPTIMAL L2-ERROR ESTIMATES FOR EXPANDED MIXED FINITE ELEMENT METHODS OF SEMILINEAR SOBOLEV EQUATIONS

Mi Ray Ohm, Hyun Young Lee and Jun Yong Shin
Journal of the Korean Mathematical Society 51 (3) 545 (2014)
https://doi.org/10.4134/JKMS.2014.51.3.545

Analysis of an Upwind-Mixed Hybrid Finite Element Method for Transport Problems

Fabian Brunner, Florin A. Radu and Peter Knabner
SIAM Journal on Numerical Analysis 52 (1) 83 (2014)
https://doi.org/10.1137/130908191

MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS

DOUGLAS N. ARNOLD, RICHARD S. FALK and JAY GOPALAKRISHNAN
Mathematical Models and Methods in Applied Sciences 22 (09) (2012)
https://doi.org/10.1142/S0218202512500248

Mixed Finite Element Method for Dirichlet Boundary Control Problem Governed by Elliptic PDEs

Wei Gong and Ningning Yan
SIAM Journal on Control and Optimization 49 (3) 984 (2011)
https://doi.org/10.1137/100795632

New mixed finite volume methods for second order eliptic problems

Kwang Y. Kim
ESAIM: Mathematical Modelling and Numerical Analysis 40 (1) 123 (2006)
https://doi.org/10.1051/m2an:2006001

Expanded mixed finite element methods for linear second-order elliptic problems, I

Zhangxin Chen
ESAIM: Mathematical Modelling and Numerical Analysis 32 (4) 479 (1998)
https://doi.org/10.1051/m2an/1998320404791

Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations

Zhangxin Chen
The IMA Volumes in Mathematics and its Applications, Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations 75 187 (1995)
https://doi.org/10.1007/978-1-4612-4248-2_10

Mixed Finite Element Methods for Nonlinear Second-Order Elliptic Problems

Eun-Jae Park
SIAM Journal on Numerical Analysis 32 (3) 865 (1995)
https://doi.org/10.1137/0732040

Superconvergence of the Velocity Along the Gauss Lines in Mixed Finite Element Methods

R. E. Ewing, R. D. Lazarov and J. Wang
SIAM Journal on Numerical Analysis 28 (4) 1015 (1991)
https://doi.org/10.1137/0728054

A Local Post-Processing Technique for Improving the Accuracy in Mixed Finite-Element Approximations

James H. Bramble and Jinchao Xu
SIAM Journal on Numerical Analysis 26 (6) 1267 (1989)
https://doi.org/10.1137/0726073