Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Roughness‐induced effects on the thermomicropolar fluid flow through a thin domain

Igor Pažanin and Francisco J. Suárez‐Grau
Studies in Applied Mathematics 151 (2) 716 (2023)
https://doi.org/10.1111/sapm.12611

Homogenization of the non-isothermal, non-Newtonian fluid flow in a thin domain with oscillating boundary

Jean Carlos Nakasato and Igor Pažanin
Zeitschrift für angewandte Mathematik und Physik 74 (6) (2023)
https://doi.org/10.1007/s00033-023-02105-7

Asymptotic Behavior of a Bingham Flow in Thin Domains with Rough Boundary

Giuseppe Cardone, Carmen Perugia and Manuel Villanueva Pesqueira
Integral Equations and Operator Theory 93 (3) (2021)
https://doi.org/10.1007/s00020-021-02643-7

Analysis of the Roughness Regimes for Micropolar Fluids via Homogenization

Francisco J. Suárez-Grau
Bulletin of the Malaysian Mathematical Sciences Society 44 (3) 1613 (2021)
https://doi.org/10.1007/s40840-020-01027-1

On lower-dimensional models in lubrication, Part A: Common misinterpretations and incorrect usage of the Reynolds equation

Andreas Almqvist, Evgeniya Burtseva, Kumbakonam Rajagopal and Peter Wall
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 235 (8) 1692 (2021)
https://doi.org/10.1177/1350650120973792

A Decomposition Result for the Pressure of a Fluid in a Thin Domain and Extensions to Elasticity Problems

Juan Casado-Díaz, Manuel Luna-Laynez and Francisco J. Suárez-Grau
SIAM Journal on Mathematical Analysis 52 (3) 2201 (2020)
https://doi.org/10.1137/19M1257871

Homogenization of the Darcy–Lapwood–Brinkman Flow in a Thin Domain with Highly Oscillating Boundaries

Igor Pažanin and Francisco Javier Suárez-Grau
Bulletin of the Malaysian Mathematical Sciences Society 42 (6) 3073 (2019)
https://doi.org/10.1007/s40840-018-0649-2

A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact

Christoph Ager, Benedikt Schott, Anh‐Tu Vuong, Alexander Popp and Wolfgang A. Wall
International Journal for Numerical Methods in Engineering 119 (13) 1345 (2019)
https://doi.org/10.1002/nme.6094

Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary

María Anguiano and Francisco Javier Suárez-Grau
IMA Journal of Applied Mathematics 84 (1) 63 (2019)
https://doi.org/10.1093/imamat/hxy052

Homogenization in Hydrodynamic Lubrication: Microscopic Regimes and Re-Entrant Textures

İ. N. Yıldıran, İ. Temizer and B. Çetin
Journal of Tribology 140 (1) (2018)
https://doi.org/10.1115/1.4036770

A Comparison of the Roughness Regimes in Hydrodynamic Lubrication

John Fabricius, Afonso Tsandzana, Francesc Perez-Rafols and Peter Wall
Journal of Tribology 139 (5) (2017)
https://doi.org/10.1115/1.4035868

Stochastic multiscale analysis in hydrodynamic lubrication

A. Waseem, J. Guilleminot and İ. Temizer
International Journal for Numerical Methods in Engineering 112 (8) 1070 (2017)
https://doi.org/10.1002/nme.5546

Homogenization‐based design of surface textures in hydrodynamic lubrication

A. Waseem, İ. Temizer, J. Kato and K. Terada
International Journal for Numerical Methods in Engineering 108 (12) 1427 (2016)
https://doi.org/10.1002/nme.5256

Asymptotic behaviour of Stokes flow in a thin domain with a moving rough boundary

J. Fabricius, Y. O. Koroleva, A. Tsandzana and P. Wall
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470 (2167) 20130735 (2014)
https://doi.org/10.1098/rspa.2013.0735

On the effects of surface roughness in thin film flow governed by the time dependent Stokes equations

P. Wall, Yu. O. Koroleva, A. Tsandzana and J. Fabricius
Doklady Mathematics 90 (1) 445 (2014)
https://doi.org/10.1134/S106456241405010X

Thin layer of a non-Newtonian fluid flowing on a rough surface and percolating through a perforated obstacle

A. Yu. Linkevich, T. S. Ratiu, S. V. Spiridonov and G. A. Chechkin
Journal of Mathematical Sciences 189 (3) 525 (2013)
https://doi.org/10.1007/s10958-013-1204-1

Asymptotic Behavior of the Navier--Stokes System in a Thin Domain with Navier Condition on a Slightly Rough Boundary

J. Casado-Díaz, M. Luna-Laynez and F. J. Suárez-Grau
SIAM Journal on Mathematical Analysis 45 (3) 1641 (2013)
https://doi.org/10.1137/120873479

Computing hydrodynamic pressure in mixed lubrication by modified Reynolds equation

Aurelian Fatu, Dominique Bonneau and Ramona Fatu
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 226 (12) 1074 (2012)
https://doi.org/10.1177/1350650112461866

Homogenization of a Reynolds equation describing compressible flow

Andreas Almqvist, John Fabricius and Peter Wall
Journal of Mathematical Analysis and Applications 390 (2) 456 (2012)
https://doi.org/10.1016/j.jmaa.2012.02.005

Analysis of the effects of rough surfaces in compressible thin film flow by homogenization

Dag Lukkassen, Annette Meidell and Peter Wall
International Journal of Engineering Science 49 (5) 369 (2011)
https://doi.org/10.1016/j.ijengsci.2010.10.005

Homogenization of a class of nonlinear variational inequalities with applications in fluid film flow

Dag Lukkassen, Annette Meidell and Peter Wall
Chinese Annals of Mathematics, Series B 32 (3) 417 (2011)
https://doi.org/10.1007/s11401-011-0643-6

Roughness-Induced Effect at Main Order on the Reynolds Approximation

Didier Bresch, Catherine Choquet, Laurent Chupin, Thierry Colin and Marguerite Gisclon
Multiscale Modeling & Simulation 8 (3) 997 (2010)
https://doi.org/10.1137/090754996

Homogenization of a stratified magnetic fluid problem with microinhomogeneous magnetic field and boundary data

S. V. Spiridonov
Journal of Mathematical Sciences 165 (1) 158 (2010)
https://doi.org/10.1007/s10958-010-9786-3

A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary

Juan Casado-Díaz, Manuel Luna-Laynez and Francisco Javier Suárez-Grau
Comptes Rendus. Mathématique 348 (17-18) 967 (2010)
https://doi.org/10.1016/j.crma.2010.07.023

Effets d'anisotropie par homogénéisation dans un problème à frontière libre

Guy Bayada, Sébastien Martin and Carlos Vazquez
Comptes Rendus. Mathématique 340 (7) 541 (2005)
https://doi.org/10.1016/j.crma.2005.02.021

Reynolds type equation for a thin flow under intensive transverse percolation

Sergueï Nazarov and Juha H. Videman
Mathematische Nachrichten 269-270 (1) 189 (2004)
https://doi.org/10.1002/mana.200310172