Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

An alternating direction implicit finite element Galerkin method for the linear Schrödinger equation

Morrakot Khebchareon, Amiya K. Pani, Graeme Fairweather and Ryan I. Fernandes
Numerical Algorithms (2024)
https://doi.org/10.1007/s11075-023-01740-5

Computing a numerical solution of two dimensional non-linear Schrödinger equation on complexly shaped domains by RBF based differential quadrature method

Ahmad Golbabai and Ahmad Nikpour
Journal of Computational Physics 322 586 (2016)
https://doi.org/10.1016/j.jcp.2016.07.003

Numerical methods for a class of generalized nonlinear schrödinger equations

Mindaugas Radziunas, Raimondas Čiegis and Shalva Amiranashvili
Kinetic and Related Models 8 (2) 215 (2015)
https://doi.org/10.3934/krm.2015.8.215

A Theoretical Analysis for a New Finite Volume Scheme for a Linear Schrödinger Evolution Equation on General Nonconforming Spatial Meshes

Abdallah Bradji
Numerical Functional Analysis and Optimization 36 (5) 590 (2015)
https://doi.org/10.1080/01630563.2015.1020548

The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation

L.W. Zhang, Y.J. Deng, K.M. Liew and Y.M. Cheng
Computers & Mathematics with Applications 68 (10) 1093 (2014)
https://doi.org/10.1016/j.camwa.2014.07.024

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Abdallah Bradji
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects 77 127 (2014)
https://doi.org/10.1007/978-3-319-05684-5_11

Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations

Xavier Antoine, Weizhu Bao and Christophe Besse
Computer Physics Communications 184 (12) 2621 (2013)
https://doi.org/10.1016/j.cpc.2013.07.012

A posteriorierror analysis for the Crank-Nicolson method for linear Schrödinger equations

Irene Kyza
ESAIM: Mathematical Modelling and Numerical Analysis 45 (4) 761 (2011)
https://doi.org/10.1051/m2an/2010101

Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics

D. C. Antonopoulou, V. A. Dougalis and G. E. Zouraris
SIAM Journal on Numerical Analysis 47 (4) 2752 (2009)
https://doi.org/10.1137/070710858

Discrete-time Orthogonal Spline Collocation Methods for Schrödinger Equations in Two Space Variables

Bingkun Li, Graeme Fairweather and Bernard Bialecki
SIAM Journal on Numerical Analysis 35 (2) 453 (1998)
https://doi.org/10.1137/S0036142996302396

Stability and convergence of Dufort-Frankel-type difference schemes for a nonlinear Schrödinger-type equation

F. Ivanauskas and M. Radžiūnas
Lithuanian Mathematical Journal 37 (3) 249 (1997)
https://doi.org/10.1007/BF02465356

Global dynamics of a discontinuous Galerkin approximation to a class of reaction-diffusion equations

Donald A. French and Søren Jensen
Applied Numerical Mathematics 18 (4) 473 (1995)
https://doi.org/10.1016/0168-9274(95)00093-A

On Optimal Order Error Estimates for the Nonlinear Schrödinger Equation

Ohannes Karakashian, Georgios D. Akrivis and Vassilios A. Dougalis
SIAM Journal on Numerical Analysis 30 (2) 377 (1993)
https://doi.org/10.1137/0730018