Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Convergence of nonlinear finite volume schemes for two-phase porous media flow on general meshes

Léo Agélas, Martin Schneider, Guillaume Enchéry and Bernd Flemisch
IMA Journal of Numerical Analysis 42 (1) 515 (2022)
https://doi.org/10.1093/imanum/draa064

Combined mixed finite element and nonconforming finite volume methods for flow and transport in porous media

Omar El Moutea and Hassan El Amri
Analysis 41 (3) 123 (2021)
https://doi.org/10.1515/anly-2018-0019

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Edwige Godlewski and Pierre-Arnaud Raviart
Applied Mathematical Sciences, Numerical Approximation of Hyperbolic Systems of Conservation Laws 118 425 (2021)
https://doi.org/10.1007/978-1-0716-1344-3_5

A positive cell vertex Godunov scheme for a Beeler–Reuter based model of cardiac electrical activity

Mostafa Bendahmane, Fatima Mroue and Mazen Saad
Numerical Methods for Partial Differential Equations 37 (1) 262 (2021)
https://doi.org/10.1002/num.22528

On convergence of explicit finite volume scheme for one-dimensional three-component two-phase flow model in porous media

Mohamed Lamine Mostefai, Abdelbaki Choucha and Bahri Cherif
Demonstratio Mathematica 54 (1) 510 (2021)
https://doi.org/10.1515/dema-2021-0036

Positivity-preserving finite volume scheme for compressible two-phase flows in anisotropic porous media: The densities are depending on the physical pressures

Mustapha Ghilani, El Houssaine Quenjel and Mazen Saad
Journal of Computational Physics 407 109233 (2020)
https://doi.org/10.1016/j.jcp.2020.109233

Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media

Mustapha Ghilani, EL Houssaine Quenjel and Mazen Saad
Computational Geosciences 23 (1) 55 (2019)
https://doi.org/10.1007/s10596-018-9783-z

Vertex-centred discretization of multiphase compositional Darcy flows on general meshes

Robert Eymard, Cindy Guichard, Raphaele Herbin and Roland Masson
Computational Geosciences 16 (4) 987 (2012)
https://doi.org/10.1007/s10596-012-9299-x

Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media

Brahim Amaziane, Mustapha El Ossmani and Christophe Serres
Computational Geosciences 12 (4) 437 (2008)
https://doi.org/10.1007/s10596-008-9083-0

Convergence of a Numerical Scheme for Stratigraphic Modeling

R. Eymard, T. Gallouët, V. Gervais and R. Masson
SIAM Journal on Numerical Analysis 43 (2) 474 (2005)
https://doi.org/10.1137/S0036142903426208

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin and Anthony Michel
ESAIM: Mathematical Modelling and Numerical Analysis 37 (6) 937 (2003)
https://doi.org/10.1051/m2an:2003062

Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media

M. Afif and B. Amaziane
Computer Methods in Applied Mechanics and Engineering 191 (46) 5265 (2002)
https://doi.org/10.1016/S0045-7825(02)00458-9

On convergence of finite volume schemes for one-dimensional two-phase flow in porous media

M. Afif and B. Amaziane
Journal of Computational and Applied Mathematics 145 (1) 31 (2002)
https://doi.org/10.1016/S0377-0427(01)00534-9

Discrete Sobolev inequalities andLperror estimates for finite volume solutions of convection diffusion equations

Yves Coudière, Thierry Gallouët and Raphaèle Herbin
ESAIM: Mathematical Modelling and Numerical Analysis 35 (4) 767 (2001)
https://doi.org/10.1051/m2an:2001135

Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3)

Robert Eymard, Thierry Gallouët and Raphaèle Herbin
Handbook of Numerical Analysis, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3) 7 713 (2000)
https://doi.org/10.1016/S1570-8659(00)07005-8

A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes for Conservation Laws on Unstructured Grids

P. ARMINJON, M.-C. VIALLON and A. MADRANE
International Journal of Computational Fluid Dynamics 9 (1) 1 (1998)
https://doi.org/10.1080/10618569808940837

Finite volume schemes for elliptic and elliptic-hyperbolic problems on triangular meshes

Raphae`le Herbin and Olivier Labergerie
Computer Methods in Applied Mechanics and Engineering 147 (1-2) 85 (1997)
https://doi.org/10.1016/S0045-7825(97)00010-8

An error estimate for a finite volume scheme for a diffusion–convection problem on a triangular mesh

Raphaèle Herbin
Numerical Methods for Partial Differential Equations 11 (2) 165 (1995)
https://doi.org/10.1002/num.1690110205

Mathematical and Numerical Properties of Control-Volume, Finite-Element Scheme for Reservoir Simulation

Robert Eymard and Fernand Sonier
SPE Reservoir Engineering 9 (04) 283 (1994)
https://doi.org/10.2118/25267-PA