Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Spectral-Galerkin methods for the fully nonlinear Monge-Ampère equation

Lixiang Jin, Zhaoxiang Li, Peipei Wang and Lijun Yi
Applied Numerical Mathematics 207 621 (2025)
https://doi.org/10.1016/j.apnum.2024.09.028

On the reduction in accuracy of finite difference schemes on manifolds without boundary

Brittany Froese Hamfeldt and Axel G R Turnquist
IMA Journal of Numerical Analysis 44 (3) 1751 (2024)
https://doi.org/10.1093/imanum/drad048

An adaptive least-squares algorithm for the elliptic Monge–Ampère equation

Alexandre Caboussat, Dimitrios Gourzoulidis and Marco Picasso
Comptes Rendus. Mécanique 351 (S1) 277 (2024)
https://doi.org/10.5802/crmeca.222

Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation

Ngoc Cuong Nguyen and Jaime Peraire
Journal of Scientific Computing 100 (2) (2024)
https://doi.org/10.1007/s10915-024-02604-3

Spectral Collocation Method for Numerical Solution to the Fully Nonlinear Monge-Ampère Equation

Peipei Wang, Lixiang Jin, Zhaoxiang Li and Lijun Yi
Journal of Scientific Computing 100 (3) (2024)
https://doi.org/10.1007/s10915-024-02617-y

Operator-Splitting/Finite Element Methods for the Minkowski Problem

Hao Liu, Shingyu Leung and Jianliang Qian
SIAM Journal on Scientific Computing 46 (5) A3230 (2024)
https://doi.org/10.1137/23M1590779

A nonlinear least-squares convexity enforcing 𝐶⁰ interior penalty method for the Monge–Ampère equation on strictly convex smooth planar domains

Susanne Brenner, Li-yeng Sung, Zhiyu Tan and Hongchao Zhang
Communications of the American Mathematical Society 4 (14) 607 (2024)
https://doi.org/10.1090/cams/39

Three ways to solve partial differential equations with neural networks — A review

Jan Blechschmidt and Oliver G. Ernst
GAMM-Mitteilungen 44 (2) (2021)
https://doi.org/10.1002/gamm.202100006

Numerical Mathematics and Advanced Applications ENUMATH 2019

Alexandre Caboussat and Dimitrios Gourzoulidis
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications ENUMATH 2019 139 225 (2021)
https://doi.org/10.1007/978-3-030-55874-1_21

A convexity enforcing $${C}^{{0}}$$ interior penalty method for the Monge–Ampère equation on convex polygonal domains

Susanne C. Brenner, Li-yeng Sung, Zhiyu Tan and Hongchao Zhang
Numerische Mathematik 148 (3) 497 (2021)
https://doi.org/10.1007/s00211-021-01210-x

Error estimation for second‐order partial differential equations in nonvariational form

Jan Blechschmidt, Roland Herzog and Max Winkler
Numerical Methods for Partial Differential Equations 37 (3) 2190 (2021)
https://doi.org/10.1002/num.22678

A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampère equation

Hongtao Chen, Xiaobing Feng and Zhimin Zhang
Advances in Computational Mathematics 47 (2) (2021)
https://doi.org/10.1007/s10444-021-09847-w

Geometric Partial Differential Equations - Part I

Michael Neilan, Abner J. Salgado and Wujun Zhang
Handbook of Numerical Analysis, Geometric Partial Differential Equations - Part I 21 105 (2020)
https://doi.org/10.1016/bs.hna.2019.05.003

A DGFEM for nondivergence form elliptic equations with Cordes coefficients on curved domains

Ellya L. Kawecki
Numerical Methods for Partial Differential Equations 35 (5) 1717 (2019)
https://doi.org/10.1002/num.22372

Two-scale method for the Monge–Ampère equation: pointwise error estimates

R H Nochetto, D Ntogkas and W Zhang
IMA Journal of Numerical Analysis 39 (3) 1085 (2019)
https://doi.org/10.1093/imanum/dry026

A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation

Roland Glowinski, Hao Liu, Shingyu Leung and Jianliang Qian
Journal of Scientific Computing 79 (1) 1 (2019)
https://doi.org/10.1007/s10915-018-0839-y

A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation

Hao Liu, Roland Glowinski, Shingyu Leung and Jianliang Qian
Journal of Scientific Computing 81 (3) 2271 (2019)
https://doi.org/10.1007/s10915-019-01080-4

A Discontinuous Galerkin Finite Element Method fOR Uniformly Elliptic Two Dimensional Oblique Boundary-Value Problems

Ellya L. Kawecki
SIAM Journal on Numerical Analysis 57 (2) 751 (2019)
https://doi.org/10.1137/17M1155946

Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation

Ricardo H. Nochetto and Wujun Zhang
Numerische Mathematik 141 (1) 253 (2019)
https://doi.org/10.1007/s00211-018-0988-9

A Least-Squares/Relaxation Method for the Numerical Solution of the Three-Dimensional Elliptic Monge–Ampère Equation

Alexandre Caboussat, Roland Glowinski and Dimitrios Gourzoulidis
Journal of Scientific Computing 77 (1) 53 (2018)
https://doi.org/10.1007/s10915-018-0698-6

Optimal Pointwise Error Estimates for Two-Scale Methods for the Monge--Ampère Equation

Wenbo Li and Ricardo H. Nochetto
SIAM Journal on Numerical Analysis 56 (3) 1915 (2018)
https://doi.org/10.1137/18M1165670

Optimal-Transport--Based Mesh Adaptivity on the Plane and Sphere Using Finite Elements

Andrew T. T. McRae, Colin J. Cotter and Chris J. Budd
SIAM Journal on Scientific Computing 40 (2) A1121 (2018)
https://doi.org/10.1137/16M1109515

A multigrid scheme for 3D Monge–Ampère equations

Jun Liu, Brittany D. Froese, Adam M. Oberman and Mingqing Xiao
International Journal of Computer Mathematics 94 (9) 1850 (2017)
https://doi.org/10.1080/00207160.2016.1247443

Numerical methods for the 2-Hessian elliptic partial differential equation

Brittany D. Froese, Adam M. Oberman and Tiago Salvador
IMA Journal of Numerical Analysis 37 (1) 209 (2017)
https://doi.org/10.1093/imanum/drw007

Splitting Methods in Communication, Imaging, Science, and Engineering

Roland Glowinski
Scientific Computation, Splitting Methods in Communication, Imaging, Science, and Engineering 251 (2016)
https://doi.org/10.1007/978-3-319-41589-5_8

Monotone and consistent discretization of the Monge-Ampère operator

Jean-David Benamou, Francis Collino and Jean-Marie Mirebeau
Mathematics of Computation 85 (302) 2743 (2016)
https://doi.org/10.1090/mcom/3080

Solving the Monge–Ampère equations for the inverse reflector problem

Kolja Brix, Yasemin Hafizogullari and Andreas Platen
Mathematical Models and Methods in Applied Sciences 25 (05) 803 (2015)
https://doi.org/10.1142/S0218202515500190

Discretization of the 3d monge−ampere operator, between wide stencils and power diagrams

Jean-Marie Mirebeau
ESAIM: Mathematical Modelling and Numerical Analysis 49 (5) 1511 (2015)
https://doi.org/10.1051/m2an/2015016

Modeling, Simulation and Optimization for Science and Technology

Alexandre Caboussat
Computational Methods in Applied Sciences, Modeling, Simulation and Optimization for Science and Technology 34 23 (2014)
https://doi.org/10.1007/978-94-017-9054-3_2

A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two

Alexandre Caboussat, Roland Glowinski and Danny C. Sorensen
ESAIM: Control, Optimisation and Calculus of Variations 19 (3) 780 (2013)
https://doi.org/10.1051/cocv/2012033

Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations

Xiaobing Feng, Roland Glowinski and Michael Neilan
SIAM Review 55 (2) 205 (2013)
https://doi.org/10.1137/110825960