The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Antoine Gloria , Stefan Neukamm , Felix Otto
ESAIM: M2AN, 48 2 (2014) 325-346
Published online: 2014-01-21
This article has been cited by the following article(s):
47 articles
Stochastic Homogenization of Gaussian Fields on Random Media
Leandro Chiarini and Wioletta M. Ruszel Annales Henri Poincaré 25 (3) 1869 (2024) https://doi.org/10.1007/s00023-023-01347-5
Bias in the Representative Volume Element method: Periodize the Ensemble Instead of Its Realizations
Nicolas Clozeau, Marc Josien, Felix Otto and Qiang Xu Foundations of Computational Mathematics 24 (4) 1305 (2024) https://doi.org/10.1007/s10208-023-09613-y
Quantitative Nonlinear Homogenization: Control of Oscillations
Nicolas Clozeau and Antoine Gloria Archive for Rational Mechanics and Analysis 247 (4) (2023) https://doi.org/10.1007/s00205-023-01895-4
Numerical upscaling of parametric microstructures in a possibilistic uncertainty framework with tensor trains
Martin Eigel, Robert Gruhlke, Dieter Moser and Lars Grasedyck Computational Mechanics 71 (4) 615 (2023) https://doi.org/10.1007/s00466-022-02261-z
Optimal decay of the parabolic semigroup in stochastic homogenization for correlated coefficient fields
Nicolas Clozeau Stochastics and Partial Differential Equations: Analysis and Computations 11 (3) 1254 (2023) https://doi.org/10.1007/s40072-022-00254-w
Non-perturbative approach to the Bourgain–Spencer conjecture in stochastic homogenization
Mitia Duerinckx Journal de Mathématiques Pures et Appliquées 176 183 (2023) https://doi.org/10.1016/j.matpur.2023.06.005
Approximation of homogenized coefficients in deterministic homogenization and convergence rates in the asymptotic almost periodic setting
Willi Jäger, Antoine Tambue and Jean Louis Woukeng Analysis and Applications 21 (05) 1311 (2023) https://doi.org/10.1142/S0219530523500136
Quantitative homogenization theory for random suspensions in steady Stokes flow
Mitia Duerinckx and Antoine Gloria Journal de l’École polytechnique — Mathématiques 9 1183 (2022) https://doi.org/10.5802/jep.204
An efficient algorithm for solving elliptic problems on percolation clusters
Chenlin Gu The Annals of Applied Probability 32 (4) (2022) https://doi.org/10.1214/21-AAP1748
An elliptic Harnack inequality for difference equations with random balanced coefficients
Noam Berger, Moran Cohen, Jean-Dominique Deuschel and Xiaoqin Guo The Annals of Probability 50 (3) (2022) https://doi.org/10.1214/21-AOP1544
Optimal corrector estimates on percolation cluster
Paul Dario The Annals of Applied Probability 31 (1) (2021) https://doi.org/10.1214/20-AAP1593
Quantitative estimates in stochastic homogenization for correlated coefficient fields
Antoine Gloria, Stefan Neukamm and Felix Otto Analysis & PDE 14 (8) 2497 (2021) https://doi.org/10.2140/apde.2021.14.2497
Quantitative homogenization of differential forms
Paul Dario Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 57 (2) (2021) https://doi.org/10.1214/20-AIHP1111
Multiscale functional inequalities in probability: Constructive approach
Mitia Duerinckx and Antoine Gloria Annales Henri Lebesgue 3 825 (2020) https://doi.org/10.5802/ahl.47
Fractal Homogenization of Multiscale Interface Problems
Martin Heida, Ralf Kornhuber and Joscha Podlesny Multiscale Modeling & Simulation 18 (1) 294 (2020) https://doi.org/10.1137/18M1204759
Higher-order pathwise theory of fluctuations in stochastic homogenization
Mitia Duerinckx and Felix Otto Stochastics and Partial Differential Equations: Analysis and Computations 8 (3) 625 (2020) https://doi.org/10.1007/s40072-019-00156-4
Uniform estimate of an iterative method for elliptic problems with rapidly oscillating coefficients
Chenlin Gu Stochastics and Partial Differential Equations: Analysis and Computations 8 (4) 787 (2020) https://doi.org/10.1007/s40072-019-00159-1
Effective multipoles in random media
Peter Bella, Arianna Giunti and Felix Otto Communications in Partial Differential Equations 45 (6) 561 (2020) https://doi.org/10.1080/03605302.2020.1743309
The Structure of Fluctuations in Stochastic Homogenization
Mitia Duerinckx, Antoine Gloria and Felix Otto Communications in Mathematical Physics 377 (1) 259 (2020) https://doi.org/10.1007/s00220-020-03722-3
The Choice of Representative Volumes in the Approximation of Effective Properties of Random Materials
Julian Fischer Archive for Rational Mechanics and Analysis 234 (2) 635 (2019) https://doi.org/10.1007/s00205-019-01400-w
Heat kernel upper bounds for interacting particle systems
Arianna Giunti, Yu Gu and Jean-Christophe Mourrat The Annals of Probability 47 (2) (2019) https://doi.org/10.1214/18-AOP1279
Homogenization of Cahn–Hilliard-type equations via evolutionary $$\varvec{\Gamma }$$-convergence
Matthias Liero and Sina Reichelt Nonlinear Differential Equations and Applications NoDEA 25 (1) (2018) https://doi.org/10.1007/s00030-018-0495-9
Asymptotically Compatible Schemes for Stochastic Homogenization
Qi Sun, Qiang Du and Ju Ming SIAM Journal on Numerical Analysis 56 (3) 1942 (2018) https://doi.org/10.1137/17M1132604
A Liouville theorem for elliptic systems with degenerate ergodic coefficients
Peter Bella, Benjamin Fehrman and Felix Otto The Annals of Applied Probability 28 (3) (2018) https://doi.org/10.1214/17-AAP1332
Convergences of the squareroot approximation scheme to the Fokker–Planck operator
Martin Heida Mathematical Models and Methods in Applied Sciences 28 (13) 2599 (2018) https://doi.org/10.1142/S0218202518500562
An Introduction to the Qualitative and Quantitative Theory of Homogenization
Stefan NEUKAMM Interdisciplinary Information Sciences 24 (1) 1 (2018) https://doi.org/10.4036/iis.2018.A.01
The additive structure of elliptic homogenization
Scott Armstrong, Tuomo Kuusi and Jean-Christophe Mourrat Inventiones mathematicae 208 (3) 999 (2017) https://doi.org/10.1007/s00222-016-0702-4
Green’s function for elliptic systems: existence and Delmotte–Deuschel bounds
Joseph G. Conlon, Arianna Giunti and Felix Otto Calculus of Variations and Partial Differential Equations 56 (6) (2017) https://doi.org/10.1007/s00526-017-1255-0
Handbook of Uncertainty Quantification
Guillaume Bal Handbook of Uncertainty Quantification 497 (2017) https://doi.org/10.1007/978-3-319-12385-1_9
High order correctors and two-scale expansions in stochastic homogenization
Yu Gu Probability Theory and Related Fields 169 (3-4) 1221 (2017) https://doi.org/10.1007/s00440-016-0750-0
Moment bounds on the corrector of stochastic homogenization of non-symmetric elliptic finite difference equations
Jonathan Ben-Artzi, Daniel Marahrens and Stefan Neukamm Communications in Partial Differential Equations 42 (2) 179 (2017) https://doi.org/10.1080/03605302.2017.1281298
Handbook of Uncertainty Quantification
Guillaume Bal Handbook of Uncertainty Quantification 1 (2016) https://doi.org/10.1007/978-3-319-11259-6_9-1
Lipschitz Regularity for Elliptic Equations with Random Coefficients
Scott N. Armstrong and Jean-Christophe Mourrat Archive for Rational Mechanics and Analysis 219 (1) 255 (2016) https://doi.org/10.1007/s00205-015-0908-4
Pointwise two-scale expansion for parabolic equations with random coefficients
Yu Gu and Jean-Christophe Mourrat Probability Theory and Related Fields 166 (1-2) 585 (2016) https://doi.org/10.1007/s00440-015-0667-z
A central limit theorem for fluctuations in 1D stochastic homogenization
Yu Gu Stochastics and Partial Differential Equations: Analysis and Computations 4 (4) 713 (2016) https://doi.org/10.1007/s40072-016-0075-0
Scaling Limit of Fluctuations in Stochastic Homogenization
Yu Gu and Jean-Christophe Mourrat Multiscale Modeling & Simulation 14 (1) 452 (2016) https://doi.org/10.1137/15M1010683
Annealed estimates on the Green functions and uncertainty quantification
Antoine Gloria and Daniel Marahrens Annales de l'Institut Henri Poincaré C, Analyse non linéaire 33 (5) 1153 (2016) https://doi.org/10.1016/j.anihpc.2015.04.001
A Quantitative Central Limit Theorem for the Effective Conductance on the Discrete Torus
Antoine Gloria and James Nolen Communications on Pure and Applied Mathematics 69 (12) 2304 (2016) https://doi.org/10.1002/cpa.21614
Mesoscopic Higher Regularity and Subadditivity in Elliptic Homogenization
Scott Armstrong, Tuomo Kuusi and Jean-Christophe Mourrat Communications in Mathematical Physics 347 (2) 315 (2016) https://doi.org/10.1007/s00220-016-2663-2
Correlation structure of the corrector in stochastic homogenization
Jean-Christophe Mourrat and Felix Otto The Annals of Probability 44 (5) (2016) https://doi.org/10.1214/15-AOP1045
Non-periodic homogenization of infinitesimal strain plasticity equations
Martin Heida and Ben Schweizer ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 96 (1) 5 (2016) https://doi.org/10.1002/zamm.201400112
Corrector Estimates for Elliptic Systems with Random Periodic Coefficients
Peter Bella and Felix Otto Multiscale Modeling & Simulation 14 (4) 1434 (2016) https://doi.org/10.1137/15M1037147
Reduction in the Resonance Error in Numerical Homogenization II: Correctors and Extrapolation
Antoine Gloria and Zakaria Habibi Foundations of Computational Mathematics 16 (1) 217 (2016) https://doi.org/10.1007/s10208-015-9246-z
Convergence rates and Hölder estimates in almost-periodic homogenization of elliptic systems
Zhongwei Shen Analysis & PDE 8 (7) 1565 (2015) https://doi.org/10.2140/apde.2015.8.1565
Moment bounds for the corrector in stochastic homogenization of a percolation model
Agnes Lamacz, Stefan Neukamm and Felix Otto Electronic Journal of Probability 20 (none) (2015) https://doi.org/10.1214/EJP.v20-3618
Fluctuations of parabolic equations with large random potentials
Yu Gu and Guillaume Bal Stochastic Partial Differential Equations: Analysis and Computations 3 (1) 1 (2015) https://doi.org/10.1007/s40072-014-0040-8
Diffusive decay of the environment viewed by the particle
Paul de Buyer and Jean-Christophe Mourrat Electronic Communications in Probability 20 (none) (2015) https://doi.org/10.1214/ECP.v20-3998