The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Mario Ohlberger
ESAIM: M2AN, 35 2 (2001) 355-387
Published online: 2002-04-15
This article has been cited by the following article(s):
63 articles
Learning the flux and diffusion function for degenerate convection-diffusion equations using different types of observations
Qing Li and Steinar Evje BIT Numerical Mathematics 64 (2) (2024) https://doi.org/10.1007/s10543-024-01018-9
A posteriori element residual error estimations for the cell functional minimization scheme
Li Yin, Zhiming Gao and Yanzhao Cao Numerical Methods for Partial Differential Equations 38 (6) 2123 (2022) https://doi.org/10.1002/num.22871
Positive nonlinear DDFV scheme for a degenerate parabolic system describing chemotaxis
Moustafa Ibrahim, El Houssaine Quenjel and Mazen Saad Computers & Mathematics with Applications 80 (12) 2972 (2020) https://doi.org/10.1016/j.camwa.2020.10.018
An explicit a posteriori error estimations for the cell functional minimization scheme of elliptic problems
Li Yin, Zhiming Gao and Yanzhao Cao Journal of Computational and Applied Mathematics 362 309 (2019) https://doi.org/10.1016/j.cam.2018.10.034
A multilevel Monte Carlo finite difference method for random scalar degenerate convection–diffusion equations
Ujjwal Koley, Nils Henrik Risebro, Christoph Schwab and Franziska Weber Journal of Hyperbolic Differential Equations 14 (03) 415 (2017) https://doi.org/10.1142/S021989161750014X
Timothy Barth, Raphaèle Herbin and Mario Ohlberger 1 (2017) https://doi.org/10.1002/9781119176817.ecm2010
Adaptive multistep time discretization and linearization based on a posteriori error estimates for the Richards equation
V. Baron, Y. Coudière and P. Sochala Applied Numerical Mathematics 112 104 (2017) https://doi.org/10.1016/j.apnum.2016.10.005
Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects
Caterina Calgaro and Meriem Ezzoug Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects 199 245 (2017) https://doi.org/10.1007/978-3-319-57397-7_17
On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro and Erlend Briseid Storrøsten ESAIM: Mathematical Modelling and Numerical Analysis 50 (2) 499 (2016) https://doi.org/10.1051/m2an/2015057
Adaptive Bilinear Element Finite Volume Methods for Second-Order Elliptic Problems on Nonmatching Grids
Yanli Chen, Yonghai Li, Zhiqiang Sheng and Guangwei Yuan Journal of Scientific Computing 64 (1) 130 (2015) https://doi.org/10.1007/s10915-014-9927-9
Adaptive Mesh Refinement for a Finite Volume Method for Flow and Transport of Radionuclides in Heterogeneous Porous Media
Brahim Amaziane, Marc Bourgeois and Mohamed El Fatini Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 69 (4) 687 (2014) https://doi.org/10.2516/ogst/2013176
A new residual posteriori error estimates of mixed finite element methods for convection‐diffusion‐reaction equations
Shaohong Du Numerical Methods for Partial Differential Equations 30 (2) 593 (2014) https://doi.org/10.1002/num.21830
On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model
Moustafa Ibrahim and Mazen Saad Computers & Mathematics with Applications 68 (9) 1032 (2014) https://doi.org/10.1016/j.camwa.2014.03.010
𝐿¹ error estimates for difference approximations of degenerate convection-diffusion equations
K. Karlsen, N. Risebro and E. Storrøsten Mathematics of Computation 83 (290) 2717 (2014) https://doi.org/10.1090/S0025-5718-2014-02818-4
A kinetic approach to error estimate for nonautonomous
anisotropic degenerate parabolic-hyperbolic equations
Xingwen Hao, Yachun Li and Qin Wang Kinetic & Related Models 7 (3) 477 (2014) https://doi.org/10.3934/krm.2014.7.477
A posteriori error estimates for finite volume method based on bilinear trial functions for the elliptic equation
Tao Lin and Xiu Ye Journal of Computational and Applied Mathematics 254 185 (2013) https://doi.org/10.1016/j.cam.2013.03.007
Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients
Zhigang Wang, Lei Wang and Yachun Li Communications on Pure & Applied Analysis 12 (3) 1163 (2013) https://doi.org/10.3934/cpaa.2013.12.1163
An error estimate for the finite difference approximation to degenerate convection–diffusion equations
K. H. Karlsen, U. Koley and N. H. Risebro Numerische Mathematik 121 (2) 367 (2012) https://doi.org/10.1007/s00211-011-0433-9
The homogeneous dirichlet problem for quasilinear anisotropic degenerate parabolic-hyperbolic equation with Lp initial value
Wang Zhigang and Li Yachun Acta Mathematica Scientia 32 (5) 1727 (2012) https://doi.org/10.1016/S0252-9602(12)60137-4
A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations
Marianne Bessemoulin-Chatard and Francis Filbet SIAM Journal on Scientific Computing 34 (5) B559 (2012) https://doi.org/10.1137/110853807
A posterior error estimate for finite volume methods of the second order elliptic problem
Xiu Ye Numerical Methods for Partial Differential Equations 27 (5) 1165 (2011) https://doi.org/10.1002/num.20575
Finite Volumes for Complex Applications VI Problems & Perspectives
Alexandre Ern and Martin Vohralı́k Springer Proceedings in Mathematics, Finite Volumes for Complex Applications VI Problems & Perspectives 4 821 (2011) https://doi.org/10.1007/978-3-642-20671-9_85
A posteriori error analysis of nonconforming finite volume elements for general second‐order elliptic PDEs
Min Yang Numerical Methods for Partial Differential Equations 27 (2) 277 (2011) https://doi.org/10.1002/num.20520
A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids
Danielle Hilhorst and Martin Vohralík Computer Methods in Applied Mechanics and Engineering 200 (5-8) 597 (2011) https://doi.org/10.1016/j.cma.2010.08.017
Hierarchical error estimates for finite volume approximation solution of elliptic equations
Qingsong Zou Applied Numerical Mathematics 60 (1-2) 142 (2010) https://doi.org/10.1016/j.apnum.2009.10.006
A Posteriori Error Estimation for a Finite Volume Discretization on Anisotropic Meshes
M. Afif, B. Amaziane, G. Kunert, Z. Mghazli and S. Nicaise Journal of Scientific Computing 43 (2) 183 (2010) https://doi.org/10.1007/s10915-010-9352-7
A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids
Robert Eymard, Danielle Hilhorst and Martin Vohralík Numerical Methods for Partial Differential Equations 26 (3) 612 (2010) https://doi.org/10.1002/num.20449
DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS
B. ANDREIANOV, M. BENDAHMANE and K. H. KARLSEN Journal of Hyperbolic Differential Equations 07 (01) 1 (2010) https://doi.org/10.1142/S0219891610002062
Convergence analysis of a vertex-centered finite volume scheme for a copper heap leaching model
Emilio Cariaga, Fernando Concha, Iuliu Sorin Pop and Mauricio Sepúlveda Mathematical Methods in the Applied Sciences n/a (2009) https://doi.org/10.1002/mma.1234
A posteriori estimators for vertex centred finite volume discretization of a convection–diffusion‐reaction equation arising in flow in porous media
B. Amaziane, A. Bergam, M. El Ossmani and Z. Mghazli International Journal for Numerical Methods in Fluids 59 (3) 259 (2009) https://doi.org/10.1002/fld.1456
Interval Inclusion Computation for the Solutions of the Burgers Equation
Qun Lin and Lung-an Ying SIAM Journal on Numerical Analysis 47 (4) 2496 (2009) https://doi.org/10.1137/080722011
A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation
Pascal Omnes, Yohan Penel and Yann Rosenbaum SIAM Journal on Numerical Analysis 47 (4) 2782 (2009) https://doi.org/10.1137/080735047
Heuristic a posteriori estimation of error due to dissipation in finite volume schemes and application to mesh adaptation
Richard P. Dwight Journal of Computational Physics 227 (5) 2845 (2008) https://doi.org/10.1016/j.jcp.2007.11.020
Reduced basis method for finite volume approximations of parametrized linear evolution equations
Bernard Haasdonk and Mario Ohlberger ESAIM: Mathematical Modelling and Numerical Analysis 42 (2) 277 (2008) https://doi.org/10.1051/m2an:2008001
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
Raimund Bürger, Ricardo Ruiz, Kai Schneider and Mauricio A. Sepúlveda Journal of Engineering Mathematics 60 (3-4) 365 (2008) https://doi.org/10.1007/s10665-007-9162-6
Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods
Martin Vohralík Numerische Mathematik 111 (1) 121 (2008) https://doi.org/10.1007/s00211-008-0168-4
Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods
Brahim Amaziane and Mustapha El Ossmani Numerical Methods for Partial Differential Equations 24 (3) 799 (2008) https://doi.org/10.1002/num.20291
A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations
Martin Vohralík SIAM Journal on Numerical Analysis 45 (4) 1570 (2007) https://doi.org/10.1137/060653184
Error Control for a Class of Runge–Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws
Andreas Dedner, Charalambos Makridakis and Mario Ohlberger SIAM Journal on Numerical Analysis 45 (2) 514 (2007) https://doi.org/10.1137/050624248
A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems
Robert Eymard, Danielle Hilhorst and Martin Vohralík Numerische Mathematik 105 (1) 73 (2006) https://doi.org/10.1007/s00211-006-0036-z
A Posteriori Error Estimations of Some Cell Centered Finite Volume Methods for Diffusion-Convection-Reaction Problems
Serge Nicaise SIAM Journal on Numerical Analysis 44 (3) 949 (2006) https://doi.org/10.1137/040611483
Computational Science and High Performance Computing
D. Kröner Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Computational Science and High Performance Computing 88 367 (2005) https://doi.org/10.1007/3-540-32376-7_21
A posteriori error estimations of some cell-centered finite volume methods
Serge Nicaise SIAM Journal on Numerical Analysis 43 (4) 1481 (2005) https://doi.org/10.1137/S0036142903437787
Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method
Mario Ohlberger and Julien Vovelle Mathematics of Computation 75 (253) 113 (2005) https://doi.org/10.1090/S0025-5718-05-01770-9
Flow through porous media with applications to heap leaching of copper ores
E. Cariaga, F. Concha and M. Sepúlveda Chemical Engineering Journal 111 (2-3) 151 (2005) https://doi.org/10.1016/j.cej.2005.02.019
Sharp 𝐿¹ a posteriori error analysis for nonlinear convection-diffusion problems
Zhiming Chen and Guanghua Ji Mathematics of Computation 75 (253) 43 (2005) https://doi.org/10.1090/S0025-5718-05-01778-3
Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media
Mario Ohlberger Computing and Visualization in Science 7 (1) 41 (2004) https://doi.org/10.1007/s00791-004-0128-1
A Local A Posteriori Error Estimator Based on Equilibrated Fluxes
R. Luce and B. I. Wohlmuth SIAM Journal on Numerical Analysis 42 (4) 1394 (2004) https://doi.org/10.1137/S0036142903433790
Timothy Barth and Mario Ohlberger (2004) https://doi.org/10.1002/0470091355.ecm010
𝐿¹–framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations
Gui-Qiang Chen and Kenneth Karlsen Transactions of the American Mathematical Society 358 (3) 937 (2004) https://doi.org/10.1090/S0002-9947-04-03689-X
A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross-section
R. Bürger, J.J.R. Damasceno and K.H. Karlsen International Journal of Mineral Processing 73 (2-4) 183 (2004) https://doi.org/10.1016/S0301-7516(03)00073-5
Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods
Anthony Michel and Julien Vovelle SIAM Journal on Numerical Analysis 41 (6) 2262 (2003) https://doi.org/10.1137/S0036142902406612
Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression
Elmer M. Tory, Kenneth H. Karlsen, Raimund Bürger and Stefan Berres SIAM Journal on Applied Mathematics 64 (1) 41 (2003) https://doi.org/10.1137/S0036139902408163
Trends in Nonlinear Analysis
Dietmar Kröner, Marc Küther, Mario Ohlberger and Christian Rohde Trends in Nonlinear Analysis 289 (2003) https://doi.org/10.1007/978-3-662-05281-5_7
Optimal Rate of Convergence for Anisotropic Vanishing Viscosity Limit of a Scalar Balance Law
Charalambos Makridakis and Benoı⁁t Perthame SIAM Journal on Mathematical Analysis 34 (6) 1300 (2003) https://doi.org/10.1137/S0036141002407995
Geometric Analysis and Nonlinear Partial Differential Equations
Sebastian Noelle and Michael Westdickenberg Geometric Analysis and Nonlinear Partial Differential Equations 417 (2003) https://doi.org/10.1007/978-3-642-55627-2_21
An Error Estimate for Viscous Approximate Solutions of Degenerate Parabolic Equations
Kenneth H. Karlsen and Steinar Evje Journal of Nonlinear Mathematical Physics 9 (3) 261 (2002) https://doi.org/10.2991/jnmp.2002.9.3.3
Local adaptive methods for convection dominated problems
Robert Klöfkorn, Dietmar Kröner and Mario Ohlberger International Journal for Numerical Methods in Fluids 40 (1-2) 79 (2002) https://doi.org/10.1002/fld.268
A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations
Kenneth H. Karlsen and Mario Ohlberger Journal of Mathematical Analysis and Applications 275 (1) 439 (2002) https://doi.org/10.1016/S0022-247X(02)00305-0
Convergence of finite volume schemes for a degenerate convection–diffusion equation arising in flow in porous media
M. Afif and B. Amaziane Computer Methods in Applied Mechanics and Engineering 191 (46) 5265 (2002) https://doi.org/10.1016/S0045-7825(02)00458-9
Hyperbolic Problems: Theory, Numerics, Applications
Thomas Geßner and Dietmar Kröner Hyperbolic Problems: Theory, Numerics, Applications 415 (2001) https://doi.org/10.1007/978-3-0348-8370-2_44
Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
Kenneth Hvistendahl Karlsen and Nils Henrik Risebro ESAIM: Mathematical Modelling and Numerical Analysis 35 (2) 239 (2001) https://doi.org/10.1051/m2an:2001114
Magne S. Espedal and Kenneth Hvistendahl Karlsen 1734 9 (2000) https://doi.org/10.1007/BFb0103975