Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: A review

K. J. Petersen and J. R. Brinkerhoff
Physics of Fluids 33 (4) (2021)
https://doi.org/10.1063/5.0046938

Fingering pattern induced by spinodal decomposition in hydrodynamically stable displacement in a partially miscible system

Ryuta X. Suzuki, Yuichiro Nagatsu, Manoranjan Mishra and Takahiko Ban
Physical Review Fluids 4 (10) (2019)
https://doi.org/10.1103/PhysRevFluids.4.104005

Viscous Fingering of Miscible Liquids in Porous and Swellable Media for Rapid Diagnostic Tests

Holly Clingan, Devon Rusk, Kathryn Smith and Antonio Garcia
Bioengineering 5 (4) 94 (2018)
https://doi.org/10.3390/bioengineering5040094

On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress

Caterina Calgaro, Meriem Ezzoug and Ezzeddine Zahrouni
Mathematical Methods in the Applied Sciences 40 (1) 92 (2017)
https://doi.org/10.1002/mma.3969

A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg–de Vries Equation

Ali Samii, Nishant Panda, Craig Michoski and Clint Dawson
Journal of Scientific Computing 68 (1) 191 (2016)
https://doi.org/10.1007/s10915-015-0133-1

Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems

Didier Bresch, Vincent Giovangigli and Ewelina Zatorska
Journal de Mathématiques Pures et Appliquées 104 (4) 762 (2015)
https://doi.org/10.1016/j.matpur.2015.05.003

CONVERGENCE AND ERROR ESTIMATES OF TWO ITERATIVE METHODS FOR THE STRONG SOLUTION OF THE INCOMPRESSIBLE KORTEWEG MODEL

F. GUILLÉN-GONZÁLEZ and M. A. RODRÍGUEZ-BELLIDO
Mathematical Models and Methods in Applied Sciences 19 (09) 1713 (2009)
https://doi.org/10.1142/S0218202509003929

Quantum hydrodynamics with trajectories: The nonlinear conservation form mixed/discontinuous Galerkin method with applications in chemistry

C. Michoski, J.A. Evans, P.G. Schmitz and A. Vasseur
Journal of Computational Physics 228 (23) 8589 (2009)
https://doi.org/10.1016/j.jcp.2009.08.011

Numerical modeling of the development of small-scale magmatic emulsions by Korteweg stress driven flow

Luca Valentini and Kathryn R. Moore
Journal of Volcanology and Geothermal Research 179 (1-2) 87 (2009)
https://doi.org/10.1016/j.jvolgeores.2008.10.004

Local strong solution for the incompressible Korteweg model⁎⁎The second, third and fifth authors have been partially supported by D.G.E.S. and M.C. y T. (Spain), Projet BFM2003-06446-C02-01.

Mamadou Sy, Didier Bresch, Francisco Guillén-González, Jérôme Lemoine and Maria Angeles Rodríguez-Bellido
Comptes Rendus. Mathématique 342 (3) 169 (2006)
https://doi.org/10.1016/j.crma.2005.12.003