Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Analytical and numerical assessments of boundary variations in Steklov eigenvalue problems

Eylem Bahadır and Önder Türk
Journal of Computational and Applied Mathematics 422 114900 (2023)
https://doi.org/10.1016/j.cam.2022.114900

A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem

Gang Wang, Jian Meng, Ying Wang and Liquan Mei
IMA Journal of Numerical Analysis 42 (4) 3675 (2022)
https://doi.org/10.1093/imanum/drab079

Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem

Fei Xu, Liu Chen and Qiumei Huang
ESAIM: Mathematical Modelling and Numerical Analysis 55 (6) 2899 (2021)
https://doi.org/10.1051/m2an/2021076

A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges

Felipe Lepe, David Mora, Gonzalo Rivera and Iván Velásquez
Journal of Scientific Computing 88 (2) (2021)
https://doi.org/10.1007/s10915-021-01555-3

A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering

Yu Zhang, Hai Bi and Yidu Yang
International Journal of Computer Mathematics 97 (7) 1412 (2020)
https://doi.org/10.1080/00207160.2019.1622686

Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering

Jian Meng and Liquan Mei
Applied Mathematics and Computation 381 125307 (2020)
https://doi.org/10.1016/j.amc.2020.125307

Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem

Hai Bi, Yu Zhang and Yidu Yang
Computers & Mathematics with Applications 79 (7) 1895 (2020)
https://doi.org/10.1016/j.camwa.2018.08.047

Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering

Yidu Yang, Yu Zhang and Hai Bi
Advances in Computational Mathematics 46 (6) (2020)
https://doi.org/10.1007/s10444-020-09818-7

A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem

David Mora, Gonzalo Rivera and Rodolfo Rodríguez
Computers & Mathematics with Applications 74 (9) 2172 (2017)
https://doi.org/10.1016/j.camwa.2017.05.016

A Numerical Study of the Homogeneous Elliptic Equation with Fractional Boundary Conditions

Raytcho Lazarov and Petr Vabishchevich
Fractional Calculus and Applied Analysis 20 (2) 337 (2017)
https://doi.org/10.1515/fca-2017-0018

Local and parallel finite element algorithms for the Steklov eigenvalue problem

Hai Bi, Zhengxia Li and Yidu Yang
Numerical Methods for Partial Differential Equations 32 (2) 399 (2016)
https://doi.org/10.1002/num.21998

An improved two-grid finite element method for the Steklov eigenvalue problem

Zhifeng Weng, Shuying Zhai and Xinlong Feng
Applied Mathematical Modelling 39 (10-11) 2962 (2015)
https://doi.org/10.1016/j.apm.2014.11.017

A virtual element method for the Steklov eigenvalue problem

David Mora, Gonzalo Rivera and Rodolfo Rodríguez
Mathematical Models and Methods in Applied Sciences 25 (08) 1421 (2015)
https://doi.org/10.1142/S0218202515500372

Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems

YiDu Yang and Hai Bi
Science China Mathematics 57 (6) 1319 (2014)
https://doi.org/10.1007/s11425-013-4709-7

A Posteriori Error Estimates with Computable Upper Bound for the Nonconforming RotatedQ1Finite Element Approximation of the Eigenvalue Problems

Jie Liu, Tian Xia and Wei Jiang
Mathematical Problems in Engineering 2014 1 (2014)
https://doi.org/10.1155/2014/891278

Finding Multiple Solutions to Elliptic PDE with Nonlinear Boundary Conditions

An Le, Zhi-Qiang Wang and Jianxin Zhou
Journal of Scientific Computing 56 (3) 591 (2013)
https://doi.org/10.1007/s10915-013-9689-9

An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations

M.G. Armentano, C. Padra, R. Rodríguez and M. Scheble
Computer Methods in Applied Mechanics and Engineering 200 (1-4) 178 (2011)
https://doi.org/10.1016/j.cma.2010.08.003

Conforming Finite Element Approximations for a Fourth-Order Steklov Eigenvalue Problem

Hai Bi, Shixian Ren and Yidu Yang
Mathematical Problems in Engineering 2011 1 (2011)
https://doi.org/10.1155/2011/873152