The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
María G. Armentano
ESAIM: M2AN, 38 1 (2004) 27-36
Published online: 2004-02-15
This article has been cited by the following article(s):
An hp finite element adaptive scheme to solve the Laplace model for fluid–solid vibrations
M.G. Armentano, C. Padra, R. Rodríguez and M. Scheble
Computer Methods in Applied Mechanics and Engineering 200 (1-4) 178 (2011)
DOI: 10.1016/j.cma.2010.08.003
See this article
A two-grid discretization scheme for the Steklov eigenvalue problem
Qin Li and Yidu Yang
Journal of Applied Mathematics and Computing 36 (1-2) 129 (2011)
DOI: 10.1007/s12190-010-0392-9
See this article
A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering
Yu Zhang, Hai Bi and Yidu Yang
International Journal of Computer Mathematics 1 (2019)
DOI: 10.1080/00207160.2019.1622686
See this article
An improved two-grid finite element method for the Steklov eigenvalue problem
Zhifeng Weng, Shuying Zhai and Xinlong Feng
Applied Mathematical Modelling 39 (10-11) 2962 (2015)
DOI: 10.1016/j.apm.2014.11.017
See this article
Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems
YiDu Yang and Hai Bi
Science China Mathematics 57 (6) 1319 (2014)
DOI: 10.1007/s11425-013-4709-7
See this article
Innovation and Application of Engineering Technology
LingLing Sun
Innovation and Application of Engineering Technology 91 (2017)
DOI: 10.1201/9781315166599-12
See this article
Finding Multiple Solutions to Elliptic PDE with Nonlinear Boundary Conditions
An Le, Zhi-Qiang Wang and Jianxin Zhou
Journal of Scientific Computing 56 (3) 591 (2013)
DOI: 10.1007/s10915-013-9689-9
See this article
Inequalities for the Steklov eigenvalues
Changyu Xia and Qiaoling Wang
Chaos, Solitons & Fractals 48 61 (2013)
DOI: 10.1016/j.chaos.2013.01.008
See this article
A posteriori error estimates for the Steklov eigenvalue problem
María G. Armentano and Claudio Padra
Applied Numerical Mathematics 58 (5) 593 (2008)
DOI: 10.1016/j.apnum.2007.01.011
See this article
Local and parallel finite element algorithms for the Steklov eigenvalue problem
Hai Bi, Zhengxia Li and Yidu Yang
Numerical Methods for Partial Differential Equations 32 (2) 399 (2016)
DOI: 10.1002/num.21998
See this article
A virtual element method for the Steklov eigenvalue problem
David Mora, Gonzalo Rivera and Rodolfo Rodríguez
Mathematical Models and Methods in Applied Sciences 25 (08) 1421 (2015)
DOI: 10.1142/S0218202515500372
See this article
A Posteriori Error Estimates with Computable Upper Bound for the Nonconforming RotatedQ1Finite Element Approximation of the Eigenvalue Problems
Jie Liu, Tian Xia and Wei Jiang
Mathematical Problems in Engineering 2014 1 (2014)
DOI: 10.1155/2014/891278
See this article
Conforming Finite Element Approximations for a Fourth-Order Steklov Eigenvalue Problem
Hai Bi, Shixian Ren and Yidu Yang
Mathematical Problems in Engineering 2011 1 (2011)
DOI: 10.1155/2011/873152
See this article
A full multigrid method for the Steklov eigenvalue problem
Fei Xu
International Journal of Computer Mathematics 96 (12) 2371 (2019)
DOI: 10.1080/00207160.2018.1562060
See this article
A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
David Mora, Gonzalo Rivera and Rodolfo Rodríguez
Computers & Mathematics with Applications 74 (9) 2172 (2017)
DOI: 10.1016/j.camwa.2017.05.016
See this article
Extrapolation and superconvergence of the Steklov eigenvalue problem
Mingxia Li, Qun Lin and Shuhua Zhang
Advances in Computational Mathematics 33 (1) 25 (2010)
DOI: 10.1007/s10444-009-9118-7
See this article
The Steklov eigenvalue problem in a cuspidal domain
María G. Armentano and Ariel L. Lombardi
Numerische Mathematik 144 (2) 237 (2020)
DOI: 10.1007/s00211-019-01092-0
See this article
Non-conforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering
Yidu Yang, Yu Zhang and Hai Bi
Advances in Computational Mathematics 46 (6) (2020)
DOI: 10.1007/s10444-020-09818-7
See this article
Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem
Hai Bi, Yu Zhang and Yidu Yang
Computers & Mathematics with Applications 79 (7) 1895 (2020)
DOI: 10.1016/j.camwa.2018.08.047
See this article
Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering
Jian Meng and Liquan Mei
Applied Mathematics and Computation 381 125307 (2020)
DOI: 10.1016/j.amc.2020.125307
See this article
A Numerical Study of the Homogeneous Elliptic Equation with Fractional Boundary Conditions
Raytcho Lazarov and Petr Vabishchevich
Fractional Calculus and Applied Analysis 20 (2) 337 (2017)
DOI: 10.1515/fca-2017-0018
See this article
(2012)
DOI: 10.1109/CARPI.2012.6450177
See this article
A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem
Gang Wang, Jian Meng, Ying Wang and Liquan Mei
IMA Journal of Numerical Analysis 42 (4) 3675 (2022)
DOI: 10.1093/imanum/drab079
See this article
Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem
Fei Xu, Liu Chen and Qiumei Huang
ESAIM: Mathematical Modelling and Numerical Analysis 55 (6) 2899 (2021)
DOI: 10.1051/m2an/2021076
See this article
Analytical and numerical assessments of boundary variations in Steklov eigenvalue problems
Eylem Bahadır and Önder Türk
Journal of Computational and Applied Mathematics 422 114900 (2023)
DOI: 10.1016/j.cam.2022.114900
See this article
A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges
Felipe Lepe, David Mora, Gonzalo Rivera and Iván Velásquez
Journal of Scientific Computing 88 (2) (2021)
DOI: 10.1007/s10915-021-01555-3
See this article