Free access
Issue
ESAIM: M2AN
Volume 35, Number 6, November/December 2001
Page(s) 1079 - 1109
DOI http://dx.doi.org/10.1051/m2an:2001149
Published online 15 April 2002
  1. M. Ainsworth and I. Babuska, Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331-353. [CrossRef] [MathSciNet]
  2. M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, New York (2000).
  3. L. Angermann, Balanced a-posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems. Computing 55 (1995) 305-323. [CrossRef] [MathSciNet]
  4. T. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. [CrossRef] [MathSciNet]
  5. T. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. [CrossRef] [MathSciNet]
  6. I. Babuska and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736-754. [CrossRef] [MathSciNet]
  7. N.S. Bakhvalov, Optimization of methods for the solution of boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969) 841-859. In Russian.
  8. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283-301. [CrossRef] [MathSciNet]
  9. M. Beckers, Numerical Integration in High Dimensions. Ph.D. Thesis, Katholieke Universiteit Leuven / Louvain, Belgium (1992).
  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
  11. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the finite element method on anisotropic meshes. ETNA, Electron. Trans. Numer. Anal. 8 (1999) 36-45.
  12. P. Keast, Moderate-degree tetrahedral quadrature formulas. Comput. Methods Appl. Mech. Engrg. 55 (1986) 339-348. [CrossRef] [MathSciNet]
  13. G. Kunert, A Posteriori Error Estimation for Anisotropic Tetrahedral and Triangular Finite Element Meshes. Logos Verlag, Berlin (1999). Also Ph.D. Thesis, TU Chemnitz,
  14. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471-490. DOI 10.1007/s002110000170. [CrossRef] [MathSciNet]
  15. G. Kunert, Towards anisotropic mesh construction and error estimation in the finite element method. To appear in Numer. Meth. Partial Differential Equations. Preprint SFB393/00_01, TU Chemnitz (2000). Also
  16. G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668-689. [CrossRef] [MathSciNet]
  17. G. Kunert, A note on the energy norm for a singularly perturbed model problem. Preprint SFB393/01-02, TU Chemnitz (2001). Also
  18. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. To appear in Adv. Comp. Math.
  19. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283-303. DOI 10.1007/s002110000152. [CrossRef] [MathSciNet]
  20. J. Peraire, M. Vahdati, K. Morgan and O.C. Zienkiewicz, Adaptive remeshing for compressible flow computation. J. Comput. Phys. 72 (1987) 449-466. [CrossRef]
  21. W. Rick, H. Greza and W. Koschel, FCT-solution on adapted unstructured meshes for compressible high speed flow computations. in Flow Simulation with High-Performance Computers I, in Notes Numer. Fluid Mech. 38, E.H. Hirschel, Ed., Vieweg (1993) 334-438 .
  22. H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems. Springer, Berlin (1996).
  23. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. [CrossRef] [MathSciNet]
  24. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67-83. [CrossRef] [MathSciNet]
  25. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester, Stuttgart (1996).
  26. R. Verfürth, Robust a posteriori error estimators for singularly perturbed reaction-diffusion equations. Numer. Math. 78 (1998) 479-493. [CrossRef] [MathSciNet]
  27. R. Vilsmeier and D. Hänel, Computational aspects of flow simulation in three dimensional, unstructured, adaptive grids, in Flow Simulation with High-Performance Computers II, in Notes Numer. Fluid Mech. 52, E.H. Hirschel, Ed., Vieweg (1996) 431-44.
  28. O.C. Zienkiewicz and J. Wu, Automatic directional refinement in adaptive analysis of compressible flows. Internat. J. Numer. Methods Engrg. 37 (1994) 2189-2210 . [CrossRef] [MathSciNet]

Recommended for you