Issue |
ESAIM: M2AN
Volume 37, Number 6, November-December 2003
|
|
---|---|---|
Page(s) | 1013 - 1043 | |
DOI | https://doi.org/10.1051/m2an:2003065 | |
Published online | 15 November 2003 |
Zienkiewicz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes
1
Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany. gkunert@mathematik.tu-chemnitz.de.
2
Université de Valenciennes et du Hainaut Cambrésis,
MACS, B.P. 311, 59304 Valenciennes Cedex, France. snicaise@univ-valenciennes.fr.
Received:
17
April
2002
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz–Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
Mathematics Subject Classification: 65N15 / 65N30 / 65N50
Key words: Anisotropic mesh / error estimator / Zienkiewicz–Zhu estimator / recovered gradient.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.