Free access
Volume 36, Number 4, July/August 2002
Page(s) 705 - 724
Published online 15 September 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. Y. Coudière, J.P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. [CrossRef] [EDP Sciences] [MathSciNet]
  3. J. Droniou, Non-coercive linear elliptic problems. Potential Anal. 17 (2002) 181-203. [CrossRef] [MathSciNet]
  4. J. Droniou, Ph.D. thesis, CMI, Université de Provence.
  5. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis, Vol. VII, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 713-1020.
  6. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume approximations to the solutions of semilinear convection diffusion reaction equations. Numer. Math. 82 (1999) 91-116. [CrossRef] [MathSciNet]
  7. J.M. Fiard and R. Herbin, Comparison between finite volume finite element methods for the numerical simulation of an elliptic problem arising in electrochemical engineering. Comput. Methods Appl. Mech. Engrg. 115 (1994) 315-338. [CrossRef]
  8. P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. [CrossRef] [MathSciNet]
  9. T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. (2000).

Recommended for you