Issue |
ESAIM: M2AN
Volume 33, Number 3, May June 1999
|
|
---|---|---|
Page(s) | 493 - 516 | |
DOI | https://doi.org/10.1051/m2an:1999149 | |
Published online | 15 August 2002 |
Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem
1
Mathematiques pour l'Industrie et la Physique, UMR CNRS-UPS 5640,
INSA, Domaine Scientifique de Rangueil, 31077 Toulouse Cedex 4, France.
2
ONERA, Centre de Toulouse, 2 avenue Edouard
Belin, 31055 Toulouse Cedex, France.
Received:
24
September
1996
Revised:
14
November
1997
Revised:
4
May
1998
In this paper, a class of cell centered finite volume schemes, on general unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main result is an error estimate of order h, assuming only the W2,p (for p>2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in [12]. Some new difficulties arise here, due to the weak regularity of the solution, and the necessity to approximate the entire gradient, and not only its normal component, as in [12].
Résumé
Dans cet article, on étudie une classe de schémas volumes finis sur des maillages stucturés généraux, pour un problème linéaire de convection diffusion. La convection est approchée par un schéma décentré amont, et la diffusion par un schéma dit “des cellules diamants" [4]. On démontre une estimation d'erreur d'ordre h pour une solution continue dans W2,p (p>2), sur des maillages de quadrangles. La démonstration est une généralisation des idées de [12]. Les nouvelles difficultés sont la régularité plus faible de la solution exacte et la nécessité de construire une approximation du gradient et pas seulement de sa composante normale aux interfaces.
Mathematics Subject Classification: 65C20 / 65N12 / 65N15 / 76R50 / 45L10
Key words: Finite volumes / convection diffusion / convergence rate / unstructured meshes.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.