Free access
Volume 43, Number 1, January-February 2009
Page(s) 53 - 80
Published online 16 October 2008
  1. Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187–218. [CrossRef] [MathSciNet]
  2. Y. Assou, D. Joyeux, A. Azouni and F. Feuillebois, Mesure par interférométrie laser du mouvement d'une particule proche d'une paroi. J. Phys. III 1 (1991) 315–330.
  3. L. Bocquet and J.-L. Barrat, Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079–3092. [CrossRef]
  4. J.F. Brady and G. Bossis, Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111–157. [CrossRef]
  5. D. Bresh and V. Milisic, High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2.
  6. R.G. Cox, The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343–371. [CrossRef]
  7. R.G. Cox and H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface – II – Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753–1777. [CrossRef]
  8. S.L. Dance and M.R. Maxey, Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212–238. [CrossRef]
  9. B. Desjardin and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. [CrossRef] [MathSciNet]
  10. A. Einstein, A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289–306. [CrossRef]
  11. A. Einstein, Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591–592. [CrossRef]
  12. E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419–441. [CrossRef] [MathSciNet]
  13. R. Glowinski, T.-W. Pan, T.I. Heslaand and D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755–794. [CrossRef]
  14. M. Hillairet, Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345–1371. [CrossRef] [MathSciNet]
  15. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. [CrossRef]
  16. A.A. Johnson and T.E. Tezduyar, Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351–373. [CrossRef] [MathSciNet]
  17. S. Labbé, J. Laminie and V. Louvet, CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l'analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004).
  18. N. Lecocq, F. Feuillebois, N. Anthore, R. Anthore, F. Bostel and C. Petipas, Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3–12. [CrossRef]
  19. N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247–264. [CrossRef]
  20. A. Lefebvre, Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120–132.
  21. A. Lefebvre, Simulation numérique d'écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007).
  22. B. Maury, A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053–1058.
  23. B. Maury, Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325–351. [CrossRef] [MathSciNet]
  24. B. Maury, A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649–679. [CrossRef] [MathSciNet]
  25. B. Maury, A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133–142.
  26. S. Nasseri, N. Phan-Thien and X.J. Fan, Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388–397. [CrossRef]
  27. N.A. Patankar, P. Singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509–1524. [CrossRef]
  28. S. Richardson, A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327–336. [CrossRef]
  29. J.A. San Matín, V. Starovoitov and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113–147. [CrossRef] [MathSciNet]
  30. P. Singh, T.I. Hesla and D.D. Joseph, Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495–509. [CrossRef]
  31. J.R. Smart and D.T. Leighton, Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52. [CrossRef]
  32. D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3–39. [CrossRef] [MathSciNet]
  33. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. [MathSciNet]
  34. T. Takahashi, Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453–458. [CrossRef] [MathSciNet]
  35. G.I. Taylor, A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319–326. [CrossRef]
  36. O.I. Vinogradova and G.E. Yacubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R).
  37. D. Wan and S. Turek, Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531–566. [CrossRef]

Recommended for you