Free access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 333 - 351
DOI http://dx.doi.org/10.1051/m2an:2008050
Published online 18 December 2008
  1. R. Abgrall and S. Karni, A relaxation scheme for the two layer shallow water system, in Proceedings of the 11th International Conference on Hyperbolic Problems (Lyon, 2006), Springer (2008) 135–144.
  2. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065 [CrossRef] [MathSciNet]
  3. J. Balbás and E. Tadmor, Nonoscillatory central schemes for one- and two-dimensional magnetohydrodynamics equations. ii: High-order semidiscrete schemes. SIAM J. Sci. Comput. 28 (2006) 533–560.
  4. A. Bermudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23 (1994) 1049–1071. [CrossRef] [MathSciNet]
  5. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Birkhauser, Basel, Switzerland, Berlin (2004).
  6. M.J. Castro, J. Macias and C. Pares, A Q-scheme for a class of systems of coupled conservation laws with source terms. Application to a two-layer 1-d shallow water system. ESAIM: M2AN 35 (2001) 107–127.
  7. M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [CrossRef] [MathSciNet]
  8. N. Črnjarić-Žic, S. Vuković and L. Sopta, Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. J. Comput. Phys. 200 (2004) 512–548. [CrossRef] [MathSciNet]
  9. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet]
  10. J.M. Greenberg and A.Y. Le Roux, Well-balanced scheme for the processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [MathSciNet]
  11. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet]
  12. S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms. ESAIM: M2AN 35 (2001) 631–645. [CrossRef] [EDP Sciences]
  13. A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences]
  14. A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [MathSciNet]
  15. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [NASA ADS] [CrossRef] [MathSciNet]
  16. A. Kurganov, S. Noelle and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. [CrossRef] [MathSciNet]
  17. R.J. LeVeque, Balancing source terms and flux gradients in high resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys. 146 (1998) 346–365. [NASA ADS] [CrossRef] [MathSciNet]
  18. H. Nessyahu and E. Tadmor, Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [CrossRef] [MathSciNet]
  19. S. Noelle, N. Pankratz, G. Puppo and J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474–499. [CrossRef] [MathSciNet]
  20. S. Noelle, Y. Xing, and C.-W. Shu, High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226 (2007) 29–58. [CrossRef] [MathSciNet]
  21. C. Pares and M. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852.
  22. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet]
  23. G. Russo, Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Internat. Ser. Numer. Math. 140, Birkhäuser, Basel (2001) 821–829.
  24. C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. Comput. Phys. 83 (1989) 32–78.
  25. W.C. Thacker, Some exact solutions to the nonlinear shallow-water wave equations. Journal of Fluid Mechanics Digital Archive 107 (1981) 499–508.
  26. B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 135 (1997) 229–248.
  27. M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497–526. [CrossRef] [MathSciNet]
  28. S. Vuković and L. Sopta, High-order ENO and WENO schemes with flux gradient and source term balancing, in Applied mathematics and scientific computing (Dubrovnik, 2001), Kluwer/Plenum, New York (2003) 333–346.

Recommended for you