Issue |
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
|
|
---|---|---|
Page(s) | 991 - 1019 | |
DOI | https://doi.org/10.1051/m2an:2008036 | |
Published online | 25 September 2008 |
Interface tracking method for compressible multifluids
1
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
chertock@math.ncsu.edu
2
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.
karni@umich.edu
3
Mathematics Department, Tulane University, New Orleans, LA 70118, USA.
kurganov@math.tulane.edu
Received:
8
January
2007
Revised:
9
November
2007
Revised:
25
January
2008
This paper is concerned with numerical methods for compressible multicomponent fluids. The fluid components are assumed immiscible, and are separated by material interfaces, each endowed with its own equation of state (EOS). Cell averages of computational cells that are occupied by several fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and often leads to spurious oscillations. We present a new interface tracking algorithm, which avoids using mixed-cell information by solving the Riemann problem between its single-fluid neighboring cells. The resulting algorithm is oscillation-free for isolated material interfaces, conservative, and tends to produce almost perfect jumps across material fronts. The computational framework is general and may be used in conjunction with one's favorite finite-volume method. The robustness of the method is illustrated on shock-interface interaction in one space dimension, oscillating bubbles with radial symmetry and shock-bubble interaction in two space dimensions.
Mathematics Subject Classification: 76M12 / 76N15 / 35L65 / 35L67
Key words: Compressible Euler equations / multicomponent fluids / material interfaces / finite-volume schemes.
© EDP Sciences, SMAI, 2008
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.