Issue |
ESAIM: M2AN
Volume 50, Number 4, July-August 2016
|
|
---|---|---|
Page(s) | 1083 - 1105 | |
DOI | https://doi.org/10.1051/m2an/2015068 | |
Published online | 07 July 2016 |
Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems
1 Department of Mathematics, Nanjing University, Jiangsu
Province, Nanjing 210093, P.R. China.
hjwang@smail.nju.edu.cn; qzh@nju.edu.cn
2 College of Shipbuilding Engineering, Harbin Engineering
University, Harbin 15000, P. R. China.
wangshiping@hrbeu.edu.cn
3 Division of Applied Mathematics, Brown University,
Providence, RI 02912, USA.
shu@dam.brown.edu
Received:
23
March
2015
Revised:
8
July
2015
The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization schemes, for solving multi-dimensional convection-diffusion equations with nonlinear convection. By establishing the important relationship between the gradient and the interface jump of the numerical solution with the independent numerical solution of the gradient in the LDG method, on both rectangular and triangular elements, we can obtain the same stability results as in the one-dimensional case [H.J. Wang, C.-W. Shu and Q. Zhang, SIAM J. Numer. Anal. 53 (2015) 206–227; H.J. Wang, C.-W. Shu and Q. Zhang, Appl. Math. Comput. 272 (2015) 237–258], i.e., the IMEX LDG schemes are unconditionally stable for the multi-dimensional convection-diffusion problems, in the sense that the time-step τ is only required to be upper-bounded by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the so-called elliptic projection and the adjoint argument, we can also obtain optimal error estimates in both space and time, for the corresponding fully discrete IMEX LDG schemes, under the same condition, i.e., if piecewise polynomial of degree k is adopted on either rectangular or triangular meshes, we can show the convergence accuracy is of order 𝒪(hk+1+ τs) for the sth order IMEX LDG scheme (s = 1,2,3) under consideration. Numerical experiments are also given to verify our main results.
Mathematics Subject Classification: 65M12 / 65M15 / 65M60
Key words: Local discontinuous Galerkin method / implicit-explicit scheme / convection-diffusion / stability / error estimate
© EDP Sciences, SMAI 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.