Free Access
Issue
ESAIM: M2AN
Volume 50, Number 4, July-August 2016
Page(s) 1083 - 1105
DOI https://doi.org/10.1051/m2an/2015068
Published online 07 July 2016
  1. U.M. Ascher, S.J. Ruuth and R.J. Spiteri, Implicit-explicit Runge−Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys. 131 (1997) 267–279. [CrossRef] [MathSciNet] [Google Scholar]
  3. M.P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge−Kutta methods for advection-reaction-diffusion equations. Appl. Numer. Math. 37 (2001) 535–549. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York (1978). [Google Scholar]
  5. B. Cockburn and B. Dong, An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems, J. Sci. Comput. 32 (2007) 233–262. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Cockburn and C.-W. Shu, Runge−Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173–261. [CrossRef] [MathSciNet] [Google Scholar]
  8. B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on rectangular grids. SIAM J. Numer. Anal. 39 (2001) 264–285. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin methods for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47 (2009) 3240–3268. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.S. Falk and G.R. Richter, Analysis of a continuous finite element method for hyperbolic equations. SIAM J. Numer. Anal. 24 (1987) 257–278. [CrossRef] [MathSciNet] [Google Scholar]
  11. Y. Liu and C.-W. Shu, Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices. Sci. China Math. 59 (2016) 115–140. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.-W. Shu, Discontinuous Galerkin methods: general approach and stability, Numerical Solutions of Partial Differential Equations, Advanced Courses in Mathematics CRM Barcelona, edited by S. Bertoluzza, S. Falletta, G. Russo and C.-W. Shu. Birkhauser, Basel (2009) 149–201. [Google Scholar]
  13. V. Thomḿe, Galerkin finite element methods for parabolic problems, 2nd edition. Springer Ser. Comput. Math. Springer-Verlag, Berlin (2007). [Google Scholar]
  14. H.J. Wang and Q. Zhang, Error estimate on a fully discrete local discontinuous Galerkin method for linear convection-diffusion problem. J. Comput. Math. 31 (2013) 283–307. [CrossRef] [MathSciNet] [Google Scholar]
  15. H.J. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of the local discontinuous Galerkin method with implicit-explicit time-marching for advection-diffusion problems. SIAM J. Numer. Anal. 53 (2015) 206–227. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.J. Wang, C.-W. Shu and Q. Zhang, Stability and error estimates of the local discontinuous Galerkin method with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272 (2015) 237–258. [CrossRef] [Google Scholar]
  17. M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y.H. Xia, Y. Xu and C.-W. Shu, Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Ser. B 8 (2007) 677–693. [CrossRef] [MathSciNet] [Google Scholar]
  19. Y.H. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn–Hilliard system. Commun. Comput. Phys. 5 (2009) 821–835. [MathSciNet] [Google Scholar]
  20. Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3430–3447. [CrossRef] [MathSciNet] [Google Scholar]
  21. Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7 (2010) 1–46. [MathSciNet] [Google Scholar]
  22. J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Yan and C.-W. Shu, Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput. 17 (2002) 17–27. [Google Scholar]
  24. Q. Zhang and C.-W. Shu, Error estimates to smooth solution of Runge−Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. [Google Scholar]
  25. Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates to the third order explicit Runge−Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48 (2010) 1038–1063. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you