Issue |
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
|
|
---|---|---|
Page(s) | 215 - 247 | |
DOI | https://doi.org/10.1051/m2an:2007015 | |
Published online | 16 June 2007 |
Sparse grids for the Schrödinger equation
Institute of Numerical Simulation,
University of Bonn, Wegelerstraße 6, 53115 Bonn, Germany.
griebel@ins.uni-bonn.de; hamaekers@ins.uni-bonn.de
Received:
13
December
2005
We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore we introduce an additional constraint which gives antisymmetric sparse grids which are suited to fermionic systems. We apply the antisymmetric sparse grid discretization to the electronic Schrödinger equation and compare costs, accuracy, convergence rates and scalability with respect to the number of electrons present in the system.
Mathematics Subject Classification: 35J10 / 65N25 / 65N30 / 65T40 / 65Z05
Key words: Schrödinger equation / numerical approximation / sparse grid method / antisymmetric sparse grids.
© EDP Sciences, SMAI, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.