Free Access
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 215 - 247
Published online 16 June 2007
  1. E. Ackad and M. Horbatsch, Numerical solution of the Dirac equation by a mapped Fourier grid method. J. Phys. A: Math. General 38 (2005) 3157–3171. [CrossRef] [Google Scholar]
  2. R.A. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
  3. A. Arnold, Mathematical concepts of open quantum boundary conditions. Transport Theory Statist. Phys. 30 (2001) 561–584. [CrossRef] [Google Scholar]
  4. P.W. Atkins and R.S. Friedman, Molecular quantum mechanics. Oxford University Press, Oxford (1997). [Google Scholar]
  5. K.I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Dokl. Akad. Nauk SSSR 132 (1960) 672–675. [Google Scholar]
  6. S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith and H. Zhang, PETSc users manual. Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004). [Google Scholar]
  7. R. Bellmann, Adaptive control processes: A guided tour. Princeton University Press (1961). [Google Scholar]
  8. J. Boyd, Chebyshev and Fourier spectral methods. Dover Publications, New York (2000). [Google Scholar]
  9. H. Bungartz, Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, TU München (1992). [Google Scholar]
  10. H. Bungartz, Finite elements of higher order on sparse grids. Habilitationsschrift, Institut für Informatik, TU München and Shaker Verlag, Aachen (1998). [Google Scholar]
  11. H. Bungartz and M. Griebel, A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15 (1999) 167–199. [CrossRef] [MathSciNet] [Google Scholar]
  12. H. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 147–269. [CrossRef] [MathSciNet] [Google Scholar]
  13. Z. Cai, J. Mandel and S. McCormick, Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34 (1997) 178–200. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Chan and I. Sharapov, Subspace correction multi-level methods for elliptic eigenvalue problems. Numer. Linear Algebra Appl. 9 (2002) 1–20. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Chui and Y. Wang, A general framework for compactly supported splines and wavelets. J. Approx. Theory 71 (1992) 263–304. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications 32. North Holland (2003). [Google Scholar]
  17. E. Condon, The theory of complex spectra. Phys. Rev. 36 (1930) 1121–1133. [CrossRef] [Google Scholar]
  18. I. Daubechies, Ten lectures on wavelets. CBMS-NSF Regional Conf. Series in Appl. Math. 61, SIAM (1992). [Google Scholar]
  19. G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes. Constr. Approx. 5 (1989) 49–68. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. DeVore, S. Konyagin and V. Temlyakov, Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1–26. [Google Scholar]
  21. N. Dobrovol'skii and A. Roshchenya, Number of lattice points in the hyperbolic cross. Math. Notes 11 (1998) 319–324. [CrossRef] [Google Scholar]
  22. D. Donoho and P. Yu, Deslauriers-Dubuc: Ten years after, CRM Proceedings and Lecture Notes 18, G. Deslauriers and S. Dubuc Eds. (1999). [Google Scholar]
  23. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64 (1921) 253–287. [CrossRef] [Google Scholar]
  24. E. Fattal, R. Baer and R. Kosloff, Phase space approach for optimizing grid representations: the mapped Fourier method. Phys. Rev. E 53 (1996) 1217–1227. [CrossRef] [Google Scholar]
  25. T. Fevens and H. Jiang, Absorbing boundary conditions for the Schrödinger equation. SIAM J. Scientific Comput. 21 (1999) 255–282. [Google Scholar]
  26. R. Feynman, There's plenty of room at the bottom: An invitation to enter a new world of physics. Engineering and Science XXIII, Feb. issue (1960), [Google Scholar]
  27. H.-J. Flad, W. Hackbusch, D. Kolb and R. Schneider, Wavelet approximation of correlated wavefunctions. I. Basics., J. Chem. Phys. 116 (2002) 9641–9857. [Google Scholar]
  28. H.-J. Flad, W. Hackbusch and R. Schneider, Best N term approximation in electronic structure calculations. I. One electron reduced density matrix. Tech. Report 05-9, Berichtsreihe des Mathematischen Seminars der Universität Kiel (2005). [Google Scholar]
  29. H. Fliegl, W. Klopper and C. Hättig, Coupled-cluster theory with simplified linear-r12 corrections: The CCSD(R12) model. J. Chem. Phys. 122 (2005) 084107. [CrossRef] [Google Scholar]
  30. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Sørensen, The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401–415. [CrossRef] [Google Scholar]
  31. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Sørensen, Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183–227. [CrossRef] [Google Scholar]
  32. K. Frank, S. Heinrich and S. Pereverzev, Information complexity of multivariate Fredholm equations in Sobolev classes. J. Complexity 12 (1996) 17–34. [CrossRef] [MathSciNet] [Google Scholar]
  33. G. Friesecke, The configuraton-interaction equations for atoms and molecules: Charge quantization and existence of solutions. Preprint, June 28, 1999, Mathematical Insitute, University of Oxford, UK. [Google Scholar]
  34. J. Garcke and M. Griebel, On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165 (2000) 694–716. [CrossRef] [MathSciNet] [Google Scholar]
  35. T. Gerstner and M. Griebel, Numerical integration using sparse grids. Numer. Algorithms 18 (1998) 209–232. [CrossRef] [MathSciNet] [Google Scholar]
  36. T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71 (2003) 65–87. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Griebel, Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Stat. Comput. 15 (1994) 547–565. [CrossRef] [Google Scholar]
  38. M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Proceedings of the conference on Foundations of Computational Mathematics (FoCM05), Santander, Spain, 2005. [Google Scholar]
  39. M. Griebel and S. Knapek, Optimized tensor-product approximation spaces. Constr. Approx. 16 (2000) 525–540. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Griebel and P. Oswald, On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math. 66 (1994) 449–463. [MathSciNet] [Google Scholar]
  41. M. Griebel and P. Oswald, On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70 (1995) 161–180. [Google Scholar]
  42. M. Griebel and P. Oswald, Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4 (1995) 171–206. [CrossRef] [MathSciNet] [Google Scholar]
  43. M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations. Numer. Mathematik 83 (1999) 279–312. [Google Scholar]
  44. F. Gygi, Adaptive Riemannian metric for plane-wave electronic-structure calculations. Europhys. Lett. 19 (1992) 617. [CrossRef] [Google Scholar]
  45. F. Gygi, Electronic-structure calculations in adaptive coordinates. Phys. Rev. B 48 (1993) 11692. [CrossRef] [Google Scholar]
  46. D. Hamann, Comparison of global and local adaptive coordinates for density-functional calculations. Phys. Rev. B 63 (2001) 075107. [CrossRef] [Google Scholar]
  47. V. Hernandez, J. Roman and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31 (2005) 351–362. [Google Scholar]
  48. R. Hochmuth, Wavelet bases in numerical analysis and restricted nonlinear approximation. Habilitationsschrift, Freie Universität Berlin (1999). [Google Scholar]
  49. R. Hochmuth, S. Knapek and G. Zumbusch, Tensor products of Sobolev spaces and applications. Tech. Report 685, SFB 256, Univ. Bonn (2000). [Google Scholar]
  50. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Sørensen, Electron wavefunction and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. [CrossRef] [MathSciNet] [Google Scholar]
  51. G. Karniadakis and S. Sherwin, Spectral/hp element methods for CFD. Oxford University Press (1999). [Google Scholar]
  52. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151–177. [Google Scholar]
  53. J. Keller and D. Givoli, Exact non-reflecting boundary conditions. J. Comput. Phys. 82 (1989) 172–192. [CrossRef] [MathSciNet] [Google Scholar]
  54. S. Knapek, Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Dissertation, Universität Bonn, April (2000). [Google Scholar]
  55. S. Knapek, Hyperbolic cross approximation of integral operators with smooth kernel. Tech. Report 665, SFB 256, Univ. Bonn (2000). [Google Scholar]
  56. A. Knyazev and K. Neymeyr, Efficient solution of symmetric eigenvalue problem using multigrid preconditioners in the locally optimal block conjugate gradient method. Electronic Trans. Numer. Anal. 15 (2003) 38–55. [Google Scholar]
  57. W. Kutzelnigg, Convergence of expansions in a Gaussian basis. Strategies and Applications in Quantum Chemistry, M. Defranceschi and Y. Ellinger Eds., Kluwer, Dordrecht (1996). [Google Scholar]
  58. W. Kutzelnigg and D. Mukherjee, Minimal parametrization of an n-electron state. Phys. Rev. A 71 (2005) 022502. [CrossRef] [Google Scholar]
  59. C. Le Bris, Computational chemistry from the perspective of numerical analysis. Acta Numer. 14 (2005) 363–444. [Google Scholar]
  60. I. Levine, Quantum chemistry, 5th edn., Prentice-Hall (2000). [Google Scholar]
  61. W. Liu and A. Sherman, Comparative analysis of Cuthill-McKee and reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer Anal. 13 (1976) 198–213. [CrossRef] [MathSciNet] [Google Scholar]
  62. O. Livne and A. Brandt, O(N log N) multilevel calculation of N eigenfunctions. Multiscale Computational Methods in Chemistry and Physics, A. Brandt, J. Bernholc and K. Binder Eds., NATO Science Series III: Computer and Systems Sciences, IOS Press 177 (2001) 112–136. [Google Scholar]
  63. V. Maz'ya and G. Schmidt, On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16 (1996) 13–29. [CrossRef] [MathSciNet] [Google Scholar]
  64. D. Mazziotti, Variational two-electron reduced density matrix theory for many-electron atoms and molecules: Implementation of the spin- and symmetry-adapted T-2 condition through first-order semidefinite programming. Phys. Rev. A 72 (2005) 032510. [CrossRef] [Google Scholar]
  65. A. Messiah, Quantum mechanics. Vol. 1 and 2, North-Holland, Amsterdam, 1961/62. [Google Scholar]
  66. P. Nitsche, Best n term approximation spaces for sparse grids. Tech. Report 2003-11, ETH Zürich, Seminar für Angewandte Mathematik (2003). [Google Scholar]
  67. P. Oswald, Multilevel finite element approximation. Teubner Skripten zur Numerik, Teubner, Stuttgart (1994). [Google Scholar]
  68. R. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989). [Google Scholar]
  69. H.-J. Schmeisser and H. Triebel, Fourier analysis and functions spaces. John Wiley, Chichester (1987). [Google Scholar]
  70. J.S. Sims and S.A. Hagstrom, High-precision Hy-CI variational calculations for the ground state of neutral helium and helium-like ions. Int. J. Quant. Chem. 90 (2002) 1600–1609. [Google Scholar]
  71. J. Slater, The theory of complex spectra. Phys. Rev. 34 (1929) 1293–1322. [CrossRef] [Google Scholar]
  72. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4 (1963) 240–243, Russian original in Dokl. Akad. Nauk SSSR 148 (1963) 1042–1045. [Google Scholar]
  73. B. Szabo and I. Babuska, Finite element analysis. Wiley (1991). [Google Scholar]
  74. J. Szeftel, Design of absorbing boundary conditions for Schrödinger equations in Formula . SIAM J. Numer. Anal. 42 (2004) 1527–1551. [CrossRef] [MathSciNet] [Google Scholar]
  75. J. Weidmann, Linear operators in Hilbert spaces. Springer, New York (1980). [Google Scholar]
  76. H. Yserentant, On the electronic Schrödinger equation. Report 191, SFB 382, Univ. Tübingen (2003). [Google Scholar]
  77. H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731–759. [CrossRef] [MathSciNet] [Google Scholar]
  78. D. Zung, The approximation of classes of periodic functions of many variables. Russian Math. Surveys 38 (1983) 117–118. [CrossRef] [Google Scholar]
  79. D. Zung, Approximation by trigonometric polynomials of functions of several variables on the torus. Math. USSR Sbornik 59 (1988) 247–267. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you