Issue |
ESAIM: M2AN
Volume 35, Number 1, January/February 2001
|
|
---|---|---|
Page(s) | 1 - 15 | |
DOI | https://doi.org/10.1051/m2an:2001104 | |
Published online | 15 April 2002 |
On Monotone and Schwarz Alternating Methods for Nonlinear Elliptic PDEs
Department of Mathematics, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong. (shlui@ust.hk)
Received:
28
February
2000
The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. In this paper, proofs of convergence of some Schwarz alternating methods for nonlinear elliptic problems which are known to have solutions by the monotone method (also known as the method of subsolutions and supersolutions) are given. In particular, an additive Schwarz method for scalar as well as some coupled nonlinear PDEs are shown to converge for finitely many subdomains. These results are applicable to several models in population biology.
Mathematics Subject Classification: 65N55 / 65J15
Key words: Domain decomposition / nonlinear elliptic PDE / Schwarz alternating method / monotone methods / subsolution / supersolution.
© EDP Sciences, SMAI, 2001
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.