Issue |
ESAIM: M2AN
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
|
|
---|---|---|
Page(s) | 557 - 580 | |
DOI | https://doi.org/10.1051/m2an:2003047 | |
Published online | 15 November 2003 |
Time domain computational modelling of 1D arterial networks in monochorionic placentas
1
Biomedical Flow Group, Department of Aeronautics,
Imperial College London, South Kensington Campus
London SW7 2AZ, UK.
v.shenton@imperial.ac.uk., s.sherwin@imperial.ac.uk., web page:
2
Department of Bioengineering, Imperial College London, South Kensington Campus
London SW7 2AZ, UK.
3
Institute of Reproductive and Developmental Biology,
Imperial College London at Queen Charlotte's Hospital,
Hammersmith Campus.
In this paper we outline the hyperbolic system of governing equations describing one-dimensional blood flow in arterial networks. This system is numerically discretised using a discontinuous Galerkin formulation with a spectral/hp element spatial approximation. We apply the numerical model to arterial networks in the placenta. Starting with a single placenta we investigate the velocity waveform in the umbilical artery and its relationship with the distal bifurcation geometry and the terminal resistance. We then present results for the waveform patterns and the volume fluxes throughout a simplified model of the arterial placental network in a monochorionic twin pregnancy with an arterio-arterial anastomosis and an arterio-venous anastomosis. The effects of varying the time period of the two fetus' heart beats, increasing the input flux of one fetus and the role of terminal resistance in the network are investigated and discussed. The results show that the main features of the in vivo, physiological waves are captured by the computational model and demonstrate the applicability of the methods to the simulation of flows in arterial networks.
Mathematics Subject Classification: 92C35 / 76Z05
Key words: Wave propagation / mathematical model / spectral/hp element / arterial networks / monochorionic placentas / non-linear.
© EDP Sciences, SMAI, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.