Issue |
ESAIM: M2AN
Volume 40, Number 1, January-February 2006
|
|
---|---|---|
Page(s) | 29 - 48 | |
DOI | https://doi.org/10.1051/m2an:2006006 | |
Published online | 23 February 2006 |
Evaluation of the condition number in linear systems arising in finite element approximations
1
CERMICS, École nationale des ponts et chaussées,
Champs sur Marne, 77455 Marne la Vallée Cedex 2, France. ern@cermics.enpc.fr
2
Dept. Math, Texas A&M, College Station, TX
77843-3368, USA and
LIMSI (CNRS-UPR 3152), BP 133, 91403, Orsay, France. guermond@math.tamu.edu
Received:
7
March
2005
Revised:
6
July
2005
This paper derives upper and lower bounds for the -condition
number of the stiffness matrix resulting from the finite element
approximation of a linear, abstract model problem. Sharp estimates in
terms of the meshsize h are obtained. The theoretical results are
applied to finite element approximations of elliptic PDE's in
variational and in mixed form, and to first-order PDE's approximated
using the Galerkin–Least Squares technique or by
means of a non-standard Galerkin technique in
L1(Ω). Numerical simulations are presented to illustrate the
theoretical results.
Mathematics Subject Classification: 65F35 / 65N30
Key words: Finite elements / condition number / partial differential equations / linear algebra.
© EDP Sciences, SMAI, 2006
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.