Issue |
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
|
|
---|---|---|
Page(s) | 315 - 331 | |
DOI | https://doi.org/10.1051/m2an:2007020 | |
Published online | 16 June 2007 |
Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics
Universität Tübingen, Mathematisches Institut, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Received:
1
July
2005
We discuss the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of the time-dependent Schrödinger equation in quantum molecular dynamics. This method approximates the high-dimensional nuclear wave function by a linear combination of products of functions depending only on a single degree of freedom. The equations of motion, obtained via the Dirac-Frenkel time-dependent variational principle, consist of a coupled system of low-dimensional nonlinear partial differential equations and ordinary differential equations. We show that, with a smooth and bounded potential, the MCTDH equations are well-posed and retain high-order Sobolev regularity globally in time, that is, as long as the density matrices appearing in the method formulation remain invertible. In particular, the solutions are regular enough to ensure local quasi-optimality of the approximation and to admit an efficient numerical treatment.
Mathematics Subject Classification: 35F25 / 58J90 / 81V55
Key words: MCTDH method / wavepacket propagation / nonlinear evolution equation / well-posedness / regularity.
© EDP Sciences, SMAI, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.